Nonlinear Modeling: Model selection
Introduction to Statistical Modelling

Prof. Joris Vankerschaver
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Model Selection
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Model selection

® Also called structure characterisation

® Problem: “perfect” model and “true” parameters are unknown.

® Goal: Select best model structure from set of candidate
models, based on experimental data
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Which model fits the data the best?
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Two sources of error

Bias: How well does the model fit
the data?
® Error due to non-modeled
phenomena.
® Decreases as model gets
more complex.

Low Bias

High Bias

Variance: How well does the
model do on new, unseen data?
® Decreases with more data.
® Increases as model gets more

complex.

Figure adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
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Bias and variance are complementary

For a model M, () on a dataset D, the error decomposes as
Error[Mp(x)] = Bias[Mp(z)]? + Var[M ()] + Noise.

Goal model selection: select model with smallest total error =
compromise between bias error and variance error
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Figure adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
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Model selection for linear models

® Same data as before (slide 1)
® Polynomial model y ~ 1+ + 22 +--- 4 2¢
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® Model of degree 2 (quadratic curve) gives best fit (not too
complex, not too simple)

® Bias and variance in general difficult to calculate, need easier
criteria.
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Case study: biodegradation test

Waste treatment: Measure the oxygen uptake rate (OUR) during
oxidation of biodegradable waste products by activated sludge.

® Shape respirogram depends on degradation kinetics and
quantity added products
® Not known a priori — measure and test several models
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Case study: biodegradation data

1.5 data points per minute, acquired using dissolved oxygen (DO)
sensor.
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Case study: general model

® k pollutants Sy, ..., S}

® Oxygen uptake rate

k
OUR=> (1-Y,)rg,
=1

where Y] is the yield, (fraction of substrate \S; that is not
oxidated but transformed in biomass X), and rg_the
degradation rate of .5;.

® Candidate models differ in number of pollutants k£ and choice
of degradation rates rg .
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Case study: candidate models

Model 1: degradation of one pollutant according to first-order
kinetics. Gives exponentially decreasing OUR-curve.

k X
_ "maxl Sl
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Case study: candidate models

Model 2: degradation of one pollutant according to Monod
kinetics.

r — :umaale Sl
51 Y, Kg +85
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Case study: candidate models

Model 3: simultaneous degradation of two pollutants according to
Monod kinetics (double Monod) without interaction.
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Case study: parameter estimation

Dataset (dots) and best fits (calibrated candidate models based on
an SSE-based objective function) of the different models
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Methods for model selection
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Methods for model selection

® A priori model selection: before parameter estimation
® Reduces number of parameter estimations necessary = time gain
® Techniques not easy to determine: ad hoc methods
® A posteriori model selection: after parameter estimation
® General methods available
® Need parameter estimation for all candidate models = increase
in calculation times
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A priori model selection

® Restrict set of model candidates based on properties of data
that are independent of parameters.
® Biodegradation example: inflection points.
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A posteriori model selection

Compose set of candidate models
Collect experimental dataset(s)
Perform parameter estimation for all models
Rank candidate models and select best
Methods

® Goodness-of-fit and complexity penalization
Evaluation of undermodelling
Statistical hypothesis test
Residual analysis
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Goodness-of-fit and complexity penalization

Select least complex model that describes data (sufficiently) well.
Balance two terms:

® Goodness of fit, measured by sum-squared of residuals (SSR)
® Complexity of the model, as a function of number of
parameters.

Many different criteria to make this concrete.
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Akaike Information Criterion (AIC)

Model complexity penality: 2p, with p number of parameters:

AIC = Nln (W) + 2p.

Properties:

® Sometimes preferred when prediction accuracy is important and
sample size is small

® Not necessarily consistent (will not select true model even if
sample size is large)
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Bayes Information Criterion (BIC)

Model complexity penalty: pln N

BIC = Nln (S]SVR> +plnN.

Properties:

® Will select a simpler model than AIC.
e Consistent (under some conditions)
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AIC/BIC: Polynomial example

® SSR always decreases when number of parameters increases
® Penalty terms cause goodness-of-fit to increase at a certain
point

Example: Select best linear model iy ~ 1 + 2 + - 4+ 29 according to
AIC/BIC/... for given data.
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AIC/BIC: Polynomial example

Optimal model provides a good fit (SSR low) and is not too
complex (penalty low).

AIC/BIC Optimal fit
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e Both AIC and BIC select fit of degree 3
® |n general AIC and BIC don't have to agree
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AIC/BIC: Biodegradation example

Model p SSR AIC BIC
Exponential 2 0.36 -303.67 -299.48
Single Monod 3 0.16 -348.74 -342.45
Double Monod 6 0.01 -508.87 -496.30
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Statistical hypothesis test

® Choice between 2 models: simple and more complex
® |s complex model statistically speaking better?
[ ]

Verify using F-test:

< SSRsimple - SSRcomplea: )
pcomple:c - psimple

( SSRcomplew )
N — pcomplex

F =

® Compare test criterion with tabulated
Fl_a’pcnmplem_psim,ple7N_pcomplem for Slgnlflcance |eve| @
If value larger, complex model better (and vice versa)
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Residual analysis

® Hypothesis: model is appropriate if properties of residuals are
same as properties of measurement errors
® Two popular techniques for evaluation independence of

residuals
® Autocorrelation test (see Parameter Estimation)

® Runs test (nonparametric test)
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Autocorrelation test: Biodegradation example
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Autocorrelation test: Residuals as a function of time
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Autocorrelation test

® Residuals show some correlation for all three models, indicating

that there is some unresolved structure in the data.
® Correlations for double Monod decay much quicker than the

other two models.
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