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Model Selection
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Model selection

• Also called structure characterisation
• Problem: “perfect” model and “true” parameters are unknown.
• Goal: Select best model structure from set of candidate

models, based on experimental data
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Which model fits the data the best?
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Two sources of error

Bias: How well does the model fit
the data?

• Error due to non-modeled
phenomena.

• Decreases as model gets
more complex.

Variance: How well does the
model do on new, unseen data?

• Decreases with more data.
• Increases as model gets more

complex.
Figure adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
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Bias and variance are complementary

For a model 𝑀𝐷(𝑥) on a dataset 𝐷, the error decomposes as

Error[𝑀𝐷(𝑥)] = Bias[𝑀𝐷(𝑥)]2 + Var[𝑀𝐷(𝑥)] + Noise.

Goal model selection: select model with smallest total error =
compromise between bias error and variance error

Figure adapted from http://scott.fortmann-roe.com/docs/BiasVariance.html
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Model selection for linear models

• Same data as before (slide 1)
• Polynomial model 𝑦 ∼ 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑑
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• Model of degree 2 (quadratic curve) gives best fit (not too
complex, not too simple)

• Bias and variance in general difficult to calculate, need easier
criteria.
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Case study: biodegradation test

Waste treatment: Measure the oxygen uptake rate (OUR) during
oxidation of biodegradable waste products by activated sludge.

• Shape respirogram depends on degradation kinetics and
quantity added products

• Not known a priori → measure and test several models
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Case study: biodegradation data
1.5 data points per minute, acquired using dissolved oxygen (DO)
sensor.

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

O
U

R

9 / 29



Case study: general model

• 𝑘 pollutants 𝑆1, … , 𝑆𝑘.

• Oxygen uptake rate

𝑂𝑈𝑅 =
𝑘

∑
𝑖=1

(1 − 𝑌𝑖)𝑟𝑆𝑖

where 𝑌𝑖 is the yield, (fraction of substrate 𝑆𝑖 that is not
oxidated but transformed in biomass 𝑋), and 𝑟𝑆𝑖

the
degradation rate of 𝑆𝑖.

• Candidate models differ in number of pollutants 𝑘 and choice
of degradation rates 𝑟𝑆𝑖

.
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Case study: candidate models

Model 1: degradation of one pollutant according to first-order
kinetics. Gives exponentially decreasing OUR-curve.

𝑟𝑆1
= 𝑘𝑚𝑎𝑥1𝑋

𝑌1
𝑆1

𝑂𝑈𝑅 = (1 − 𝑌1)𝑟𝑆1
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Case study: candidate models

Model 2: degradation of one pollutant according to Monod
kinetics.

𝑟𝑆1
= 𝜇𝑚𝑎𝑥1𝑋

𝑌1

𝑆1
𝐾𝑆1

+ 𝑆1

𝑂𝑈𝑅 = (1 − 𝑌1)𝑟𝑆1
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Case study: candidate models

Model 3: simultaneous degradation of two pollutants according to
Monod kinetics (double Monod) without interaction.

𝑟𝑆1
= 𝜇𝑚𝑎𝑥1𝑋

𝑌1

𝑆1
𝐾𝑆1

+ 𝑆1

𝑟𝑆2
= 𝜇𝑚𝑎𝑥2𝑋

𝑌1

𝑆2
𝐾𝑆2

+ 𝑆2

𝑂𝑈𝑅 = (1 − 𝑌1)𝑟𝑆1
+ (1 − 𝑌2)𝑟𝑆2
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Case study: parameter estimation

Dataset (dots) and best fits (calibrated candidate models based on
an SSE-based objective function) of the different models
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Methods for model selection
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Methods for model selection

• A priori model selection: before parameter estimation
• Reduces number of parameter estimations necessary = time gain
• Techniques not easy to determine: ad hoc methods

• A posteriori model selection: after parameter estimation
• General methods available
• Need parameter estimation for all candidate models = increase

in calculation times
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A priori model selection

• Restrict set of model candidates based on properties of data
that are independent of parameters.

• Biodegradation example: inflection points.
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A posteriori model selection

• Compose set of candidate models
• Collect experimental dataset(s)
• Perform parameter estimation for all models
• Rank candidate models and select best
• Methods

• Goodness-of-fit and complexity penalization
• Evaluation of undermodelling
• Statistical hypothesis test
• Residual analysis
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Goodness-of-fit and complexity penalization

Select least complex model that describes data (sufficiently) well.

Balance two terms:

1 Goodness of fit, measured by sum-squared of residuals (SSR)
2 Complexity of the model, as a function of number of

parameters.

Many different criteria to make this concrete.
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Akaike Information Criterion (AIC)

Model complexity penality: 2𝑝, with 𝑝 number of parameters:

𝐴𝐼𝐶 = 𝑁 ln (𝑆𝑆𝑅
𝑁

) + 2𝑝.

Properties:

• Sometimes preferred when prediction accuracy is important and
sample size is small

• Not necessarily consistent (will not select true model even if
sample size is large)
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Bayes Information Criterion (BIC)

Model complexity penalty: 𝑝 ln 𝑁

𝐵𝐼𝐶 = 𝑁 ln (𝑆𝑆𝑅
𝑁

) + 𝑝 ln 𝑁.

Properties:

• Will select a simpler model than AIC.
• Consistent (under some conditions)
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AIC/BIC: Polynomial example
• SSR always decreases when number of parameters increases
• Penalty terms cause goodness-of-fit to increase at a certain

point

Example: Select best linear model 𝑦 ∼ 1 + 𝑥 + ⋯ + 𝑥𝑑 according to
AIC/BIC/… for given data.

2.5

5.0

7.5

0 2 4 6
Degree

Sum of squared residuals

0

5

10

15

20

0 2 4 6
Degree

name
AIC

BIC

Complexity penalty

22 / 29



AIC/BIC: Polynomial example
Optimal model provides a good fit (SSR low) and is not too
complex (penalty low).
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Optimal fit

• Both AIC and BIC select fit of degree 3
• In general AIC and BIC don’t have to agree
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AIC/BIC: Biodegradation example

Model p SSR AIC BIC

Exponential 2 0.36 -303.67 -299.48
Single Monod 3 0.16 -348.74 -342.45
Double Monod 6 0.01 -508.87 -496.30
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Statistical hypothesis test

• Choice between 2 models: simple and more complex
• Is complex model statistically speaking better?
• Verify using F-test:

𝐹 =
(

𝑆𝑆𝑅𝑠𝑖𝑚𝑝𝑙𝑒 − 𝑆𝑆𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝑝𝑠𝑖𝑚𝑝𝑙𝑒
)

(
𝑆𝑆𝑅𝑐𝑜𝑚𝑝𝑙𝑒𝑥

𝑁 − 𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑥
)

• Compare test criterion with tabulated
𝐹1−𝛼,𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑥−𝑝𝑠𝑖𝑚𝑝𝑙𝑒,𝑁−𝑝𝑐𝑜𝑚𝑝𝑙𝑒𝑥

for significance level 𝛼
• If value larger, complex model better (and vice versa)

25 / 29



Residual analysis

• Hypothesis: model is appropriate if properties of residuals are
same as properties of measurement errors

• Two popular techniques for evaluation independence of
residuals

• Autocorrelation test (see Parameter Estimation)
• Runs test (nonparametric test)
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Autocorrelation test: Biodegradation example
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Autocorrelation test: Residuals as a function of time
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Autocorrelation test

• Residuals show some correlation for all three models, indicating
that there is some unresolved structure in the data.

• Correlations for double Monod decay much quicker than the
other two models.
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