Nonlinear Modeling: Quality of parameter
estimates
Introduction to Statistical Modelling

Prof. Joris Vankerschaver
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Learning outcomes

You should be able to

® Understand the interpretation of measurement noise

Explain the role of the Fisher information matrix in quantifying
parameter uncertainty

e Compute a confidence interval for a parameter
Compute the correlation between two parameters
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Quality of estimation

® Apart from obtaining parameter estimates, we want to know a
measure of uncertainty for these values.

® Main idea: use objective function J(6) to quantify uncertainty.

® High curvature: low uncertainty (parameters well determined)
® Low curvature: high uncertainty (not well determined)
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Synthetic data

Model: logistic curve

_ A
T 1Tt exp(k(@pyg — )

Yy + €,

where € ~ N(0,0?).

® Parameters: A =5.6, k=14, =4 = 2.5.
® Measurement noise: 02 = 0.2 (the measure).

We take n = 20 data points from this model:
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Model fit

® From now on, we “forget” the true parameters, and we will
work with the data only.
® Nonlinear least squares: A = 5.359, k = 1.597, x4 = 2.500.
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Measurement variance
® Typically measurement variance is not known.
® |f model well-fitted: estimate from residuals:

0_2 ~ J(ebest) )
N—p

® Here 02 ~ 0.523/17 = 0.031 (true value o = 0.2%2 = 0.04)
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The loss surface

Surface obtained by plotting J(#) for all 8 in some range.
Optimal parameters are minima on this surface.

When more than 2 parameters: focus on subset of parameters.
For visualization only. (Higher dimensions: calculus)
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Exact confidence region

Confidence region: all § such that

p
J(0) < (1 + ]V_pr,Np,la) X J (Opest)

where F, ., 1, is quantile from F-distribution, « is significance
level.

® Reasonably exact for models that are not too nonlinear.
® Easy to calculate numerically

® Hard to describe or use explicitly
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Exact confidence region
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Approximate confidence region
Taylor expansion to second order:

N
J( ebest Z
=1t

ebest 9 ebest)

2

9 ebest) (6 ebest) j
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Confidence region becomes

(6 - ebest)T‘7<0 - 0best> < pF

p,N—p,1—a"

with J the Fisher Information Matrix (FIM):

Oy
ij B 02 Z (ae xkvebest) 39 (xkﬂabest)) :
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Interpretation of the FIM

® The FIM tells us how much information the data give us about
the model parameters.

® Alternatively, the FIM contains two ingredients:

® The sensitivity functions, given by

dy

Si(l’,e) = 87

Variables that are sensitive to perturbations in a parameter
contain a lot of information about that parameter, and will
contribute a lot to the FIM (and vice versa).

® The measurement noise o2. Measurements with lots of noise
contain less information about the parameters.
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Approximate confidence region
® | evel sets of quadratic approximation are ellipsoids.
® Good approximation to exact confidence region close to
optimum.
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Variance/covariance of parameters

e QOften, we want to know variance of individual parameters and
covariance between parameters.

® Encoded in the error covariance matrix:

031 cov(fy,0y) - cov(fy,0,)
| cov(6y,0;) 032 e cov(fy,0,)
cov(ép, 6;) cov(e‘p7 0y) - ag

P

® Diagonal: variances, off-diagonal: covariances

® Can be used to construct correlations between between

parameters:
cov(8;,0;)
)
0'91_ 0'9]_
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Computing the error covariance matrix

The inverse of the FIM 7 is a lower bound for C-

C>7J 1.

This is not an obvious result.
® In practice, we just take 7! as an estimate for C.
Approximate confidence interval for parameter 0,:

(Obest)i £ tN—p.1—a/2V Cis-
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Worked-out example: logistic model

To compute the FIM:

® Measurement noise: 02 ~ 0.031 (see earlier).

® Sensitivity functions:
9y _ ! 9 _ % _
0A  1+explk(rny—2) 0k 77 Orng

Often these functions have to be computed numerically (see
next chapter).
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Logistic model with synthetic data
® The inverse of the FIM is given by

0.0057 —0.0034 0.0020
J=1 = 1-0.0034 0.0169 —0.0015] .
0.0020 —0.0015 0.0040

® Parameter estimates: A = 5.359, k = 1.597, x,,q4 = 2.500.

® 95% confidence intervals (low, high):

Parameter Estimate Low High

A 5.36 520 5.52
k 1.60 132 1.87
T, 2.45 232 258

® Correlation between A and k:

R = —0.0034/+/0.057 x 0.0169 = —0.110.
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Worked-out example: stock-recruitment model

Optimal parameters:

® a=15.75
* k=33.16
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® Measurement noise:

2 _ I (Bhesr) _ 2809.01

_ = 216.
N 3 6.08

@® Sensitivity functions (for Beverton-Holt model):

of S of  as?

da 1+ 8/k" ok (k+S)?

Again, typically you would compute these derivatives
numerically.
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©® Fisher information matrix:

,_[1610 —141
T |-141 014

@ Error-covariance matrix:

1.07  11.43
— g1 _
C=7"= [11.43 130.11]
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From previous slide:

02 =1.07, o0?=130.11, Cov(a,k)=11.43.

©® 95% confidence intervals:

® For a:
Qpest £ 2.16 X 0, = [3.53,7.99]

® For k:
Kpest & 2.16 X 0, = [8.52,57.80]

@ Parameter covariance:

_ Cov(a, k) 11.43 _ 0.08

R =
o, X op  1.04 x 11.41
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Spaghetti plot

To get an idea of the variability in the confidence region, sample
parameters from it, and plot resulting fitted curves.
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Key takeaways

® Quality of parameter estimates depends on model and data,

encoded by the FIM.
® The FIM provides a way of drawing elliptical confidence regions

in parameter space.
® The FIM gives a lower bound for the error-covariance matrix.

22/22



