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Learning outcomes

You should be able to

• Determine the parameters of a nonlinear model via
minimization (using R)

• Understand the principles behind various minimization
algorithms, as well as their advantages and disadvantages

• Be able to assess the fit of a model

3 / 67



Example: building a stock-recruitment model
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M. merluccius: stock-recruitment model

European hake (M. merluccius)
• Deep water fish
• Important for European

fisheries
• Similar to �� in Korea

INFO Stock-recruitment model

Model of number of adult fish (recruitment) as a function of
spawning biomass (fish that can reproduce).
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M.merluccius: Dataset

15 observations, 3 features:

• spawn.biomass: spawning (stock) biomass
• num.fish: number of fish (recruitment)
• year: not used
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M. merluccius: Beverton-Holt model

Beverton-Holt model (1956):

𝑓(𝑆; 𝛼, 𝑘) = 𝛼𝑆
1 + 𝑆/𝑘

Parameters:

• 𝛼: initial growth rate (for 𝑆 = 0)

𝛼 = 𝑓 ′(0; 𝛼, 𝑘)

• 𝑘: related to behavior for large 𝑆

𝑘𝛼 = lim
𝑆→+∞

𝑓(𝑆; 𝛼, 𝑘)
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Beverton-Holt: Effect of varying 𝛼 and 𝑘
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Goals

• Parameter estimation: Find values ̂𝛼 and �̂� that best fit data.
• Uncertainty quantification: Provide a measure of uncertainty

for parameter values (confidence interval)
• Sensitivity analysis: Understand how model changes if

parameters are varied
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Parameter estimation
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What is parameter estimation?

Determining the optimal values for the parameters using the
experimental data, assuming that the model is known.

Example: For M. merluccius, we will see that ̂𝛼 = 5.75, �̂� = 33.16.
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Specifying a model

Assume that we are given a nonlinear model

𝑦 = 𝑓(𝑥; 𝜃) + 𝜖

where 𝜖 ∼ 𝒩(0, 𝜎2) is normally distributed noise.

• 𝑥: inputs, predictors, features (e.g. spawn.biomass)
• 𝑦: outcome, depent variable (e.g. num.fish)
• 𝜃: (vector of) parameters (e.g. 𝜃 = (𝛼, 𝑘))

We will not talk about building a model (see one of your many
other courses)
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The objective function

Given a dataset (𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁), we want to quantify how
well the model fits the data.

Objective function: measures difference (squared) between
predictions 𝑓(𝑥𝑖; 𝜃) and actual values 𝑦𝑖:

𝐽(𝜃) =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))2
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Minimizing the objective function

Goal: Find the parameter value(s) ̂𝜃 so that 𝐽(𝜃) is minimal:

̂𝜃 = argmin𝜃 𝐽(𝜃).

Problems:

• Depending on 𝑓(𝑥; 𝜃) this can be very difficult
• There may be multiple (local) minima
• Almost always needs to be done numerically
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Example: linear regression

In linear regression, 𝑓(𝑥; 𝜃) = 𝛼 + 𝛽𝑥, so that

𝐽(𝛼, 𝛽) =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)2.

Minimizing 𝐽(𝛼, 𝛽) can be done by setting the partial derivatives
equal to zero and gives the usual formulas:

̂𝛽 = 𝑅
𝑠𝑦

𝑠𝑥
, ̂𝛼 = ̄𝑦 − ̂𝛽 ̄𝑥.

In general, no closed-form formula exists for the optimal
parameters.
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Before parameter estimation: select parameters

More parameters = more work and less certainty:

• Solver may not converge
• Wider uncertainty estimates for parameters and outputs
• Correlations between parameters can make it impossible to find

parameters

Consider selecting subset of parameters to estimate:

• Fix parameters at experimental values
• Omit least sensitive parameters
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Before parameter estimation: select initial values

Numerical optimization algorithm requires a good starting guess
for the parameters. When choice is bad:

• Algorithm will converge slowly (take many iterations)
• Optimization will fail altogether

How to find initial guess:

• Determine from model properties (growth rate, asymptotes)
• Use (known) experimental values
• Use trial and error (select from grid of values)

Doesn’t need to be overly precise, a rough estimate is usually
sufficient.
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Initial values for M. merluccius
• Slope: 𝛼0 = 75

15 = 6
• Horizontal asymptote: 𝑘0𝛼0 = 120, so 𝑘0 = 20.
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Later, we will see that the initial guesses are close to the optimal
parameters ̂𝛼 = 5.75, �̂� = 33.16.
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Preparation: Determining boundaries for parameters

Some parameters come with bounds, for example:

• Kinetic rate: 𝑘 > 0
• Probability: 0 ≤ 𝑝 ≤ 1

Two ways of accounting for parameter bounds:

• Adding penalty terms to the objective function
• Transforming the parameter so it becomes unconstrained

19 / 67



Adding penalty terms
Suppose we want 𝛼 ≤ 𝜃 ≤ 𝛽. Add penalty term to objective
function:

𝐽constrained(𝜃) = 𝐽unconstrained(𝜃) + 𝐽penalty(𝜃)

where 𝐽penalty(𝜃) is

• Roughly zero between 𝛼 and 𝛽
• Very large for 𝜃 < 𝛼 or 𝜃 > 𝛽.

discontinuous
(step function)

Continuous
(smooth)
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Transformation parameters

Transform constrained problem into equivalent unconstrained
problem.

Some examples:

• If 𝜃 > 0: write 𝜃 = exp 𝜑 or 𝜃 = 𝜑2

• If −1 < 𝜃 < 1: write 𝜃 = tanh 𝜑

In either case, 𝜑 is unconstrained (can range from −∞ to +∞).
Now substitute this transformation into the objective function, and
optimize in terms of 𝜑.
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Preparation: Dealing with non-identifiability

In some cases, parameters cannot be determined uniquely. For
example, exponential model with parameters 𝐴, 𝐵, 𝐶:

𝑦 = 𝐴 exp(𝐵𝑥 + 𝐶) = (𝐴𝑒𝐶)𝑒𝐵𝑥

Only 𝐵 and the combination 𝐴𝑒𝐶 can be determined.

• Structural identifiability: all parameters can be uniquely
determined, given perfect data.

• Practical identifiability: same, but from finite, noisy data.
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Preparation: Dealing with non-identifiability

Minimization of objective function will fail if some parameters are
not identifiable. Workarounds:

• Add penalty term to 𝐽 to privilege certain parameter values
• Rewrite 𝐽 so all parameters are identifiable

Example: put 𝑘 = 𝐴𝑒𝐶 and write exponential model as

𝑦 = 𝑘 exp(𝐵𝑥).

Both 𝑘 and 𝐵 are identifiable.
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Minimizing the objective function
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General approach

Recall that we are trying to find 𝜃 so that

𝐽(𝜃) =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃))2

is minimized.

• For linear model: direct, one-step solution
• For nonlinear model: iterative algorithm. Typically:

1 Start with initial guess for ̂𝜃
2 Slightly change ̂𝜃 and compute 𝐽( ̂𝜃)
3 Repeat if ̂𝜃 not good enough
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Very simple minimization algorithm: hill descender

# Initial guess
theta <- 5.0

for (i in 1:100) {
# Add random noise to theta
theta_new <-

theta + 0.5 * rnorm(1)

# Accept if objective is lower
if (J(theta_new) < J(theta)) {

theta <- theta_new
}

}
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Caveat: local and global minima
• Linear problems: unique minium
• Nonlinear problems: (typically) several local minima
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Most minimization algorithms only guarantee convergence to a
local minimum.
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Minimization algorithms
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Gradient-based minimization algorithms

Two main classes of minimization algorithms:

1 Gradient-based methods
2 Gradient-free methods

Gradient-based methods:

• Are typically faster
• Require the objective function to be differentiable
• Can fail to converge

Examples:

• Steepest descent
• Newton
• Gauss-Newton
• Levenberg-Marquardt
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Method of steepest descent

You want to go down the
mountain into the valley as
efficiently as possible.

The fog prevents you from seeing
more than a few meters in every
direction.

How do you proceed?

Walk in the direction of
steepest descent
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Direction of steepest descent

Gradient:
• Perpendicular to level sets of 𝐽
• Direction of steepest ascent
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To decrease 𝐽(𝜃), take a small step in direction of negative
gradient:

𝑠𝑘 = −∇𝐽(𝜃𝑘)

= −
⎡
⎢
⎢
⎢
⎣

𝜕𝐽(𝜃)
𝜕𝜃1

|𝜃𝑘

𝜕𝐽(𝜃)
𝜕𝜃2

|𝜃𝑘

⋮
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⎤
⎥
⎥
⎥
⎦

.
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Method of steepest descent: Algorithm

Algorithm:

• Compute gradient ∇𝐽(𝜃𝑘) at current value 𝜃𝑘.
• Follow negative gradient to update 𝜃𝑘:

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘∇𝐽(𝜃𝑘),

with 𝛼𝑘 the step size.
• Repeat until convergence

Step size 𝛼𝑘 can be

• Fixed: 𝛼𝑘 = 𝛼 for a small fixed 𝛼 (e.g. 𝛼 = 0.01).
• Adaptive: determine the best 𝛼𝑘 at each step.
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Method of steepest descent: variable step size
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Method of steepest descent: disadvantages
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• Convergence can be slow (e.g for minimum hidden inside
narrow “valley”)

• Steepest descent path will zigzag towards minimum, making
little progress at each iteration.
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Method of Newton: 1D case

Find a minimum of 𝐽(𝜃) by solving 𝐽 ′(𝜃) = 0.
• For a starting point 𝜃𝑘, look for a

search direction 𝑠𝑘 such that
𝐽 ′(𝜃𝑘 + 𝑠𝑘) ≈ 0.

• Taylor: 𝐽 ′(𝜃𝑘 + 𝑠𝑘) is
approximately

𝐽 ′(𝜃𝑘 + 𝑠𝑘) ≈ 𝐽 ′(𝜃𝑘) + 𝑠𝑘𝐽″(𝜃𝑘).

• Search direction:

𝑠𝑘 = − 𝐽 ′(𝜃𝑘)
𝐽″(𝜃𝑘)

Uses information from first and second derivatives.
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Method of Newton: properties

For a quadratic function 𝐽(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶, Newton’s method
finds the minimum in one step.

Geometric interpretation:

• Approximate 𝐽(𝑥) around 𝑥𝑘 by best-fitting parabola.
• Jump to bottom of parabola to find 𝑥𝑘+1.
• Repeat!
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Method of Newton: higher dimensions

Search direction uses gradient and Hessian

𝑠𝑘 = − [𝐻(𝜃𝑘)]−1 ∇𝐽(𝜃𝑘)

where

𝐻(𝜃𝑘) = ∇2𝐽(𝜃𝑘) =
⎡
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⎢
⎢
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⎥
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• In practice, not necessary to invert 𝐻(𝜃)
• Still requires 𝒪(𝐷2) computation at each step (expensive)
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Method of Newton: advantages and disadvantages

Advantages:

• Less iterations needed
• Choice direction more efficient: descent and curvature

Disadvantages:

• More sensitive to local extrema
• First and second order differentials
• Step size 𝛼 = 1. If initial vector too far from minimum,

method will often not converge to minimum.
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Method of Newton: convergence

x y

z

 2 

 2 

 5 

 5 

 10 

 10 

 20 

 20 

 50 

 50 

 100 

 10
0 

0.0 0.2 0.4 0.6 0.8 1.0
−

0.
5

0.
0

0.
5

1.
0

1

2

• Very fast convergence for Rosenbrock function (3 iterations)
• In general: quadratic convergence
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Many advanced gradient-based methods exist

• Broyden-Fletcher-Goldfarb-Shanno (BFGS): approximation of
Hessian

• Levenberg-Marquardt: very popular, combines
• Steepest descent: robust but slow
• Method of Newton: fast, but often not convergent

• Powell/Brent: search along set of directions

INFO Optimization in R

Use optim(par, fn), where
• par: initial guess
• fn: the function to optimize
• method: “Nelder-Mead” (default), “BFGS”, “Brent”, …
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Worked-out example: M. merluccius

1 Define the objective function:
J <- function(theta, x, y) {

resid <- y - beverton_holt(x, theta)
return(sum(resid^2))

}

2 Specify the initial parameters:
theta0 <- c(6, 20)
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3 Run the optimizer
fit <- optim(theta0, J,

method = "BFGS",
x = M.merluccius$spawn.biomass,
y = M.merluccius$num.fish)

fit

$par
[1] 5.751024 33.157154

$value
[1] 2809.001

$counts
function gradient

45 15

$convergence
[1] 0

$message
NULL
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4 Evaluate the fit
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More sophisticated ways to look at the fit will come later.
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Gradient-free minimization algorithms

Two main classes of minimization algorithms:

1 Gradient-based methods
2 Gradient-free methods

Gradient-free methods:

• Are typically slower
• Can work even if the objective function is not differentiable
• Are more robust

Examples:

• Direction set (Powell, Brent)
• Simplex
• Global minimisation
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Simplex algorithm (Nelder-Mead 1965)

Basic idea: Capture optimal value inside simplex (triangle, pyramid,
…)

• Start with random simplex.
• Adjust worst corner of simplex by using different “actions”.
• Repeat until convergence.

Reflection Expansion

Contraction Shrink
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Simplex algorithm
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Simplex algorithm: advantages and disadvantages

• Does not require gradient, Hessian, … information
• Robust: often finds a minimum where other optimizers cannot.
• Can find a rough approximation of a minimum in just a few

updates…
• … but may take a long time to converge completely.
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Example: M. mercullius

fit <- optim(theta0, J,
method = "Nelder-Mead",
x = M.merluccius$spawn.biomass,
y = M.merluccius$num.fish)

fit$par

[1] 5.751348 33.153782

fit$count

function gradient
73 NA

Compared to BFGS:

• Almost same parameter values
• More function evaluations, no gradient evaluations
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Global minimization

• Disadvantage local techniques: local minima can never be
completely excluded

• Global techniques insensitive to this problem
• Disadvantage: needs a lot of evaluations of 𝐽
• Types:

• Gridding
• Random methods
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Global minimisation: Gridding

• Evaluate 𝐽 for a grid of parameter values 𝜃
• Select minimum among grid values
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Global minimisation: Gridding

The finer the grid:

• the more likely to find the optimum,
• BUT the more calculations needed

Iterative:

• Start with a coarse-grained grid
• Refine parameter domain and repeat

Brute force, inefficient
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Global minimisation: Random methods

Evaluate 𝐽 for random parameter sets

• Choose PDF for each parameter
• Random sampling; Latin hypercube sampling

Retain

• Optimal set (with 𝐽𝑚𝑖𝑛)
• Some sets below certain critical value (𝐽𝑐𝑟𝑖𝑡)

Examples:

• Genetic algorithms
• Shuffled complex evolution
• Ant colony optimization
• Particle swarm optimization
• Simulated annealing
• …
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Assessing the quality of a fit
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Residuals

Model:
𝑦 = 𝑓(𝑥; 𝜃) + 𝜖

where 𝜖 is normally distributed.

If the model is well-fit, the residuals 𝑒𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃) should be

• Independent
• Normally distributed with mean 0 and constant variance.

Can be checked with QQ-plot of residuals
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Example: M. mercullius
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No pattern in residuals + normality: model appears well-fit.

55 / 67



Correlations in time series (Optional)
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Residuals: correlation and independence
• We often assume that residuals are independent. But this is

not always the case, especially in time series.
• Correlations in residuals are often a sign that something is

missing from model fit.

How can we detect patterns, correlations, … in residuals?
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Autocorrelation: how are residuals related?

Autocorrelation with lag 𝜏 answers the following questions:

• To what extent does a residual depend on a previous residual?
• Is there correlation between residuals in time?

𝑟𝜀(𝜏) = 1
𝑟𝜀(0)

𝑁−𝜏
∑
𝑘=1

𝜀(𝑡𝑘) ⋅ 𝜀(𝑡𝑘 + 𝜏)
𝑁 − 𝜏

where 𝑟𝜀(0) = ∑𝑁
𝑘=1

𝜀2(𝑡𝑘)
𝑁
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Detecting significant autocorrelations

If data is uncorrelated, then autocorrelation is normally distributed:

𝑟𝜀(𝜏) ∼ 𝒩 (0, 1
𝑁

) .

Can be used to detect “abnormally high” correlations:

• Only about 5% of values outside range ±1.96/
√

𝑁.
• If more, sign that data is correlated.
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Example: Energy consumption in Korea (2017-19)
Autocorrelation uncovers repeating patterns in signal:

• Highly correlated over 12-month basis
• Anticorrelated over 6-month basis
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Source: Korea Energy Economics Institute.
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How to deal with correlations in residuals?

• Make model bigger: next slides
• Subsample data to reduce strength of correlations: not

recommended
• Use modelling technique that does not need uncorrelated

residuals (e.g. autoregressive models): outside scope of this
course
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Example: Calcium flows (simulated data)
Over the course of exercise, calcium ions flow in and out of the
muscle cells. On biological grounds, model calcium concentration as
exponentially damped sine:

𝐶(𝑡) = exp(−𝐴𝑡) sin(𝑡)

Data and model fit:
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Residual plot

Model fit is good, but not perfect. Clear repeating pattern in the
residuals.
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Autocorrelation plot
Lack of model fit, repeating pattern in the residuals can also be
seen from the autocorrelation plot.
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• Red lines: thresholds 1.96/
√

50 = 0.227.
• 13 out of 17 autocorrelations (76%) exceed threshold
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Expanding the model

Pattern in residuals is a clear sign that something is missing in our
modelling approach. Given the periodic oscillations, propose

𝐶(𝑡) = exp(−𝐴𝑡) sin(𝑡) + 𝐵 cos(𝜔𝑡).
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Residual and autocorrelation plot

No residual pattern visible in residuals. The model is well fit.
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Residual QQ-plots
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