Nonlinear Modeling: Parameter Estimation
Introduction to Statistical Modelling

Prof. Joris Vankerschaver
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Outline

@ Example: building a stock-recruitment model

@ Parameter estimation

© Minimizing the objective function
@ Minimization algorithms
@ Assessing the quality of a fit

@ Correlations in time series (Optional)
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Learning outcomes

You should be able to

® Determine the parameters of a nonlinear model via
minimization (using R)

® Understand the principles behind various minimization
algorithms, as well as their advantages and disadvantages

® Be able to assess the fit of a model
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Example: building a stock-recruitment model
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M. merluccius: stock-recruitment model

European hake (M. merluccius)
® Deep water fish
® |mportant for European

fisheries
® Similar to in Korea

1 Stock-recruitment model

Model of number of adult fish (recruitment) as a function of
spawning biomass (fish that can reproduce).
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M.merluccius: Dataset

15 observations, 3 features:

® spawn.biomass: spawning (stock) biomass

® num.fish: number of fish (recruitment)
® year: not used
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M. merluccius: Beverton-Holt model

Beverton-Holt model (1956):

asS

f(S;a’k>:m

Parameters:

® «: initial growth rate (for S = 0)
a=f(0;a,k)
® k: related to behavior for large S

ka= lim f(S;a,k)

S—+o0

7/67



Beverton-Holt: Effect of varying « and k

Alpha = 2, varying k
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Goals

e Parameter estimation: Find values & and k that best fit data.

® Uncertainty quantification: Provide a measure of uncertainty
for parameter values (confidence interval)

e Sensitivity analysis: Understand how model changes if
parameters are varied
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Parameter estimation

10/67



What is parameter estimation?

Determining the optimal values for the parameters using the
experimental data, assuming that the model is known.

Example: For M. merluccius, we will see that @ = 5.75, k = 33.16.
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Specifying a model

Assume that we are given a nonlinear model

y=f(;0)+e
where € ~ N (0,0?) is normally distributed noise.

® x: inputs, predictors, features (e.g. spawn.biomass)
® y: outcome, depent variable (e.g. num.fish)
e (: (vector of) parameters (e.g. 0 = (o, k))

We will not talk about building a model (see one of your many
other courses)
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The objective function

Given a dataset (z1,¥;), .., (T, Yn), We want to quantify how
well the model fits the data.

Objective function: measures difference (squared) between
predictions f(x;;0) and actual values y;:

N

J(0) = Z(yz — flz;;0))?

=1
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Minimizing the objective function

Goal: Find the parameter value(s) 6 so that J(0) is minimal:
6= argmin, J(0).

Problems:

® Depending on f(x;#) this can be very difficult
® There may be multiple (local) minima
® Almost always needs to be done numerically
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Example: linear regression

In linear regression, f(x;0) = a + [z, so that

N
J(a, B) = Z(yz —a— fr;)%.
i=1
Minimizing J(«a, B) can be done by setting the partial derivatives
equal to zero and gives the usual formulas:

A_Rsy ~ ~
f=R—=, a=y-—fz

Sy

In general, no closed-form formula exists for the optimal
parameters.
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Before parameter estimation: select parameters

More parameters = more work and less certainty:

® Solver may not converge

e Wider uncertainty estimates for parameters and outputs

® Correlations between parameters can make it impossible to find
parameters

Consider selecting subset of parameters to estimate:

® Fix parameters at experimental values
® Omit least sensitive parameters
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Before parameter estimation: select initial values

Numerical optimization algorithm requires a good starting guess
for the parameters. When choice is bad:

® Algorithm will converge slowly (take many iterations)
® QOptimization will fail altogether

How to find initial guess:

® Determine from model properties (growth rate, asymptotes)
® Use (known) experimental values
® Use trial and error (select from grid of values)

Doesn't need to be overly precise, a rough estimate is usually
sufficient.
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Initial values for M. merluccius

® Slope: oy = % =6

® Horizontal asymptote: kya, = 120, so ky = 20.
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Later, we will see that the initial guesses are close to the optimal
parameters & = 5.75, k = 33.16.
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Preparation: Determining boundaries for parameters

Some parameters come with bounds, for example:

e Kinetic rate: k£ >0
® Probability: 0 <p <1

Two ways of accounting for parameter bounds:

® Adding penalty terms to the objective function
® Transforming the parameter so it becomes unconstrained
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Adding penalty terms
Suppose we want a < 6 < 8. Add penalty term to objective

function:
Jconstrained (9) - Junconstrained <0> + Jpena|ty<0>
where J a1 (0) is

® Roughly zero between « and 3
® Very large for 0 < o or 8 > (.

A A
10%° — — ;
Q B Q
discontinuous Continuous
(step function) (smooth)
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Transformation parameters

Transform constrained problem into equivalent unconstrained
problem.

Some examples:

® If § > 0: write = exp p or = p?
° If =1 <0 < 1: write § =tanhp

In either case, ¢ is unconstrained (can range from —oo to +00).
Now substitute this transformation into the objective function, and
optimize in terms of .
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Preparation: Dealing with non-identifiability

In some cases, parameters cannot be determined uniquely. For
example, exponential model with parameters A, B, C"

y = Aexp(Bx + C) = (Ae®)eb?

Only B and the combination Ae® can be determined.

® Structural identifiability: all parameters can be uniquely
determined, given perfect data.
® Practical identifiability: same, but from finite, noisy data.
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Preparation: Dealing with non-identifiability

Minimization of objective function will fail if some parameters are
not identifiable. Workarounds:

® Add penalty term to J to privilege certain parameter values
® Rewrite J so all parameters are identifiable

Example: put k = Ae® and write exponential model as
y = kexp(Bzx).

Both k£ and B are identifiable.
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Minimizing the objective function
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General approach

Recall that we are trying to find 6 so that

J(0) = Z(% — flx; 9>>2

is minimized.

® For linear model: direct, one-step solution

® For nonlinear model: iterative algorithm. Typically:
@ Start with initial guess for 0
@ Slightly change 0 and compute J(Q)
© Repeat if 0 not good enough
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Very simple minimization algorithm: hill descender

# Initial guess
theta <- 5.0

for (i in 1:100) {
# Add random noise to theta

theta_new <-
theta + 0.5 * rnorm(1)

J()

# Accept if objective is lower
if (J(theta_new) < J(theta)) {
theta <- theta_new

}
}
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Caveat: local and global minima

® Linear problems: unique minium
® Nonlinear problems: (typically) several local minima

Nonlinear Linear

Global Minimum
minimum A (unique)

v

v

‘Local
minimum

Most minimization algorithms only guarantee convergence to a
local minimum.
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Minimization algorithms
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Gradient-based minimization algorithms

Two main classes of minimization algorithms:

® Gradient-based methods
® Gradient-free methods

Gradient-based methods:

® Are typically faster
® Require the objective function to be differentiable
e Can fail to converge

Examples:

® Steepest descent

® Newton

® Gauss-Newton

® |evenberg-Marquardt

29/67



Method of steepest descent

You want to go down the
mountain into the valley as
efficiently as possible.

The fog prevents you from seeing
more than a few meters in every
direction.

How do you proceed?

¢ Walk in the direction of
steepest descent
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Direction of steepest descent

Gradient: vJ
® Perpendicular to level sets of J

® Direction of steepest ascent {

20

10

To decrease J (), take a small step in direction of negative
gradient:

8](9 ’9k
8J(6 |
— 0, 6%

8J(6)
9, o
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Method of steepest descent: Algorithm

Algorithm:

e Compute gradient V.J(6%) at current value 6.
® Follow negative gradient to update #*:

Okt = gF — a, V.I(0F),

with «, the step size.
® Repeat until convergence

Step size o, can be

® Fixed: ay, = a for a small fixed a (e.g. o = 0.01).
® Adaptive: determine the best o), at each step.
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Method of steepest descent: variable step size

Adaptive Fixed

64 2
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Method of steepest descent: disadvantages

S X

0.5

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

® Convergence can be slow (e.g for minimum hidden inside
narrow “valley")

® Steepest descent path will zigzag towards minimum, making
little progress at each iteration.
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Method of Newton: 1D case

Find a minimum of J(6) by solving J'(6) = 0.
® For a starting point 0, look for a
search direction s;, such that
J (0, + si,) ~ 0.
e Taylor: J'(0), + s;,) is
approximately

J (0, + 1) = J'(0;) + 5,07 (0),).

® Search direction:

PN
SRITY

Uses information from first and second derivatives.
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Method of Newton: properties

For a quadratic function J(z) = Az? + Bz + C, Newton's method
finds the minimum in one step.

Geometric interpretation:

® Approximate J(z) around x;, by best-fitting parabola.
® Jump to bottom of parabola to find z; ;.
® Repeat!

x0=5 x1=4.37 X2 =4.08

1
1

!

!

!

!

!
!

-20 -15 -10 -05 00
-20 -15 -10 -05 00

L

-20 -15 -10 -05 00

L
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Method of Newton: higher dimensions

Search direction uses gradient and Hessian

se = — [H(6")] ' v.I(6)
where
82J 92J(0)
892 |9k a0 892|9k
82J | a2J
H(0%) = V2J(0%) = aezael o am or
82J 82J<9
o0 aal|9k o0 ae2|0k

® In practice, not necessary to invert H ()
® Still requires (D?) computation at each step (expensive)

82

90, ae |9k
BQJ(G) |
80,00, 6%

02.J(0)
002 o

37/67



Method of Newton: advantages and disadvantages

Advantages:

® | ess iterations needed
® Choice direction more efficient: descent and curvature

Disadvantages:

® More sensitive to local extrema

® First and second order differentials

® Step size a = 1. If initial vector too far from minimum,
method will often not converge to minimum.

38/67



Method of Newton: convergence

1.0
|
N\x

0.5
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|
=
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® Very fast convergence for Rosenbrock function (3 iterations)
® |n general: quadratic convergence
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Many advanced gradient-based methods exist

® Broyden-Fletcher-Goldfarb-Shanno (BFGS): approximation of
Hessian
® | evenberg-Marquardt: very popular, combines
® Steepest descent: robust but slow
® Method of Newton: fast, but often not convergent
® Powell/Brent: search along set of directions

1 Optimization in R

Use optim(par, fn), where
® par: initial guess
® fn: the function to optimize
® method: “Nelder-Mead" (default), “BFGS”, “Brent”, ..
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Worked-out example: M. merluccius

@ Define the objective function:

J <- function(theta, x, y) {
resid <- y - beverton_holt(x, theta)
return(sum(resid~2))

}

® Specify the initial parameters:
thetalO <- c(6, 20)
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© Run the optimizer

fit <- optim(thetal, J,
method = "BFGS",
x = M.merluccius$spawn.biomass,
y = M.merluccius$num.fish)

fit

$par

[1] 5.751024 33.157154

$value
[1] 2809.001

$counts
function gradient
45 15

$convergence
[1] o

$message
NULL
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O Evaluate the fit

100+

num.fish

0 20 40

60 80
spawn.biomass

More sophisticated ways to look at the fit will come later.
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Gradient-free minimization algorithms

Two main classes of minimization algorithms:

@ Gradient-based methods
® Gradient-free methods

Gradient-free methods:

® Are typically slower
e Can work even if the objective function is not differentiable
® Are more robust

Examples:

® Direction set (Powell, Brent)
® Simplex
® Global minimisation
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Simplex algorithm (Nelder-Mead 1965)

Basic idea: Capture optimal value inside simplex (triangle, pyramid,

)

® Start with random simplex.
® Adjust worst corner of simplex by using different “actions”.
® Repeat until convergence.

Reflection j Expansion
Contraction! Shrink
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Simplex algorithm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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Simplex algorithm: advantages and disadvantages

® Does not require gradient, Hessian, .. information

® Robust: often finds a minimum where other optimizers cannot.
Can find a rough approximation of a minimum in just a few
updates...

® . but may take a long time to converge completely.
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Example: M. mercullius

fit <- optim(thetal, J,
method = "Nelder-Mead",
x = M.merluccius$spawn.biomass,
y = M.merluccius$num.fish)

fit$par

[1] 5.751348 33.153782
fit$count

function gradient
73 NA

Compared to BFGS:

® Almost same parameter values
® More function evaluations, no gradient evaluations
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Global minimization

® Disadvantage local techniques: local minima can never be
completely excluded
® Global techniques insensitive to this problem
® Disadvantage: needs a lot of evaluations of J
® Types:
® Gridding

® Random methods
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Global minimisation: Gridding

6,

® Evaluate J for a grid of parameter values 6
® Select minimum among grid values

6
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250
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150
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50
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Global minimisation: Gridding

The finer the grid:

® the more likely to find the optimum,
® BUT the more calculations needed

Iterative:

® Start with a coarse-grained grid
® Refine parameter domain and repeat

Brute force, inefficient

51/67



Global minimisation: Random methods

Evaluate J for random parameter sets

® Choose PDF for each parameter
® Random sampling; Latin hypercube sampling

Retain

® Optimal set (with J,

min)
® Some sets below certain critical value (J,,.;;)

Examples:

Genetic algorithms

Shuffled complex evolution
Ant colony optimization
Particle swarm optimization
Simulated annealing
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Assessing the quality of a fit
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Residuals

Model:
y=f(z;0)+e

where € is normally distributed.
If the model is well-fit, the residuals e; = y; — f(x;;6) should be

® |ndependent
® Normally distributed with mean 0 and constant variance.

Can be checked with QQ-plot of residuals
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Example: M. mercullius

20+ 0
) * *
10+ ° 20 .
. «® *
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No pattern in residuals + normality: model appears well-fit.
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Correlations in time series (Optional)
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Residuals: correlation and independence
® \We often assume that residuals are independent. But this is
not always the case, especially in time series.
® Correlations in residuals are often a sign that something is

missing from model fit.

How can we detect patterns, correlations, ..

Random residuals

in residuals?

Correlated residuals

.
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e o
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Autocorrelation: how are residuals related?

Autocorrelation with lag 7 answers the following questions:
® To what extent does a residual depend on a previous residual?

® |s there correlation between residuals in time?

N—1

Etk tk—f—’]’)
il Z

,_n

where r_(0) = ZN €2 (ty)
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Detecting significant autocorrelations

If data is uncorrelated, then autocorrelation is normally distributed:

1
re(r) ~ N (0. )
Can be used to detect “abnormally high” correlations:

® Only about 5% of values outside range j:1.96/\/N
® |If more, sign that data is correlated.
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Example: Energy consumption in Korea (2017-19)

Autocorrelation uncovers repeating patterns in signal:

® Highly correlated over 12-month basis
® Anticorrelated over 6-month basis
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Source: Korea Energy Economics Institute.
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How to deal with correlations in residuals?

® Make model bigger: next slides

® Subsample data to reduce strength of correlations: not
recommended

® Use modelling technique that does not need uncorrelated
residuals (e.g. autoregressive models): outside scope of this
course
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Example: Calcium flows (simulated data)

Over the course of exercise, calcium ions flow in and out of the
muscle cells. On biological grounds, model calcium concentration as
exponentially damped sine:

C(t) = exp(—At) sin(t)

Data and model fit:
1.0

0.5+

0.0+

Calcium conc.

_0.5.
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Residual plot

Model fit is good, but not perfect. Clear repeating pattern in the

residuals.
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Autocorrelation plot

Lack of model fit, repeating pattern in the residuals can also be
seen from the autocorrelation plot.

1.04

ACF

Lag

® Red lines: thresholds 1.96/v/50 = 0.227.
® 13 out of 17 autocorrelations (76%) exceed threshold
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Expanding the model

Pattern in residuals is a clear sign that something is missing in our
modelling approach. Given the periodic oscillations, propose

Calcium conc.

1.0
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-0.5+

C(t) = exp(—At) sin(t) + Bcos(wt).

Model

— Expanded
- - Original

65/67



Residual and autocorrelation plot

No residual pattern visible in residuals. The model is well fit.
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Residual QQ-plots
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