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Introduction
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Classification

In many problems, the outcome is a categorical variable:
• Figure out whether mutation is deleterious (yes/no), based on

DNA sequencing data.
• Predict a person’s eye color (blue/brown/green)
• Predict the outcome of surgery (success/failure) for patients

with ovarian cancer, based on patient characteristics
• Classify iris (flower) variety given dimensions of leaves

These problems are examples of classification problems.
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Techniques for classification

• Logistic regression
• K-nearest neighbors
• Linear discriminant analysis
• Support vector classification (SVC)
• Decision trees
• …

The techniques in bold are discussed in this lecture.

Each technique has its advantages and disadvantages.
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References

• An Introduction to Statistical Learning. Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani. Available
for free online at https://www.statlearning.com/.

• Logistic regression: sections 4.1 - 4.3
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Dataset

bdiag – Wisconsin breast cancer diagnostic dataset (Nuclear
feature extraction for breast tumor diagnosis. W. Street, W.
Wolberg, O. Mangasarian. Electronic imaging 29 (1993))

• Cell nuclei from 569 tumor samples
• Classified as malignant or benign
• Features:

• radius of the cell nucleus
• texture (variance of gray-scale

values)
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A first look at the data
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K-nearest neighbors classification
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Principle
• Find 𝐾 nearest neighbors to 𝑥
• Probability of belonging to class 𝑖 is proportional to number

of neighbors in that class

• 𝑃(red|𝑋 = 𝑥) = 3
5 = 60%

• 𝑃(green|𝑋 = 𝑥) = 2
5 = 40%
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Properties

K-nearest neighbor (KNN) classification estimates probabilities

𝑃(𝑌 = 𝑗|𝑋 = 𝑥) = 1
|𝒩𝐾(𝑥)|

|𝒩𝐾(𝑥)|
∑
𝑖=1

𝐼(𝑦𝑖 = 𝑗)

Here:
• 𝒩𝐾(𝑥) is the set of 𝐾 nearest datapoints to 𝑥
• 𝐼(𝑦𝑖 = 𝑗) is equal to 1 if 𝑦𝑖 = 𝑗 and to 0 otherwise
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Advantages and disadvantages

Advantages:
• No “training” necessary
• Robust to outliers
• Can easily deal with more than 2 labels

Disadvantages:
• Not very interpretable – why was class decided?
• Memory-intensive

12 / 61



Decision boundary (𝐾 = 5)
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Logistic regression

14 / 61



Reminder: odds

• If 𝜋 is the probability of having a malignant tumor, then the
odds are defined as

Odds = 𝜋
1 − 𝜋.

For example: if 𝜋 = 0.8 then Odds = 4, meaning that for
every benign tumor there are 4 malignant ones (on average).

• Odds range from 0 (impossible event) to +∞ (almost
certain).
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Reminder: odds ratio

• Odds ratio (OR): indicates by how much the odds change
between two treatments. For example: suppose in the
treatment group the probability of a malignant tumor drops to
𝜋𝑇 = 0.75 (compared to 𝜋𝐶 = 0.8 in the untreated group).
Then

OR = Odds(𝑇 )
Odds(𝐶) = 3

4 = 0.75

• If OR < 1, then the odds for treatment 1 decrease compared
to treatment 2. If OR > 1, the odds increase.
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Log-odds (logits)
Often it makes sense to work with the logarithm of the odds
(logits):

logit(𝜋) = ln Odds = ln ( 𝜋
1 − 𝜋) .

To convert back to probabilities, use the logistic function:

𝜋 = 1
1 + 𝑒−logit .

Logits are unbounded: logit → ±∞ for 𝑝 → 0, 1
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Regression for classification

• Given data (𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) where:
• Outcomes 𝑌𝑖 are categorical (0 or 1)
• Predictors 𝑋𝑖 can be continuous or discrete

• We will model 𝑌𝑖 as a Bernoulli random variable (0 or 1) with
probability 𝜋(𝑋𝑖):

𝑌𝑖 = 0 with probability 𝜋(𝑋𝑖)
𝑌𝑖 = 1 with probability 1 − 𝜋(𝑋𝑖)

• Now we need to determine how 𝜋(𝑋) depends on 𝑋.
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Idea 1: linear regression (bad)
• One predictor 𝑋 = radius_mean, outcome 𝑌 = 0 (benign)

or 𝑌 = 1 (malignant).
• Assume 𝜋(𝑋) = 𝛼 + 𝛽𝑋 and determine 𝛼, 𝛽 through linear

regression.
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Problems:
• Fitted probabilities can take on values outside [0, 1].
• Does not easily generalize to more than two classes.
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Idea 2: logistic regression (better)

• Let 𝜋(𝑋) depend on 𝑋 through the logistic function

𝜋(𝑋) = 1
1 + exp(−(𝛼 + 𝛽𝑋)).

• Nonlinear model in parameters 𝛼, 𝛽
• Alternatively, apply the logit transformation

logit(𝜋) = 𝛼 + 𝛽𝑋.

• Linear in the logits.
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Determining the regression parameters: MLE

• Likelihood function ℒ: probability of observing the data
given the parameters 𝛼, 𝛽:

ℒ(𝛼, 𝛽) =
𝑛

∏
𝑖=1

𝑃(𝑌 = 𝑌𝑖|𝑋 = 𝑋𝑖),

where

𝑃(𝑌 = 𝑌𝑖|𝑋 = 𝑋𝑖) = 𝜋(𝑋𝑖)𝑌𝑖(1 − 𝜋(𝑋𝑖))1−𝑌𝑖 .

is the probability of observing one data point (𝑋𝑖, 𝑌𝑖).
• In practice, often better to use the log of the likelihood:

ℓ(𝛼, 𝛽) = ln ℒ(𝛼, 𝛽).
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Determining the regression parameters: MLE

• Maximum likelihood estimation (MLE): find parameters
that maximize ℒ(𝛼, 𝛽) or ℓ(𝛼, 𝛽)

• Finding maximum: set partial derivatives (score functions)
equal to zero:

𝜕ℓ
𝜕𝛼 = 0, 𝜕ℓ

𝜕𝛽 = 0.

• Complicated equations, usually maximum cannot be found
analytically (unlike least squares)

• Use numerical methods to find maximum (R does this
automatically with the glm command)
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Simplified example: MLE for binomial variable

• Suppose there are no predictors. We just have a bunch of
categorical outcomes 𝑌𝑖 = 0, 1, e.g.

𝑌 = (0, 0, 1, 0, 1, 0, … , 1, 1, 0, 0, 1)

• In semester 1 we saw that a good estimate for the probability
𝜋 = 𝑃(𝑌 = 1) is given by the proportion of 1s in the data:

̂𝜋 = 1
𝑁

𝑁
∑
𝑖=1

𝑌𝑖 = ̄𝑌 .

• We’ll use MLE to re-derive this result.
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Simplified example: MLE for binomial variable

• Likelihood

ℒ(𝜋) = Π𝑛
𝑖=1𝑃 (𝑌 = 𝑌𝑖)

= 𝜋𝑛 ̄𝑌 (1 − 𝜋)𝑛(1− ̄𝑌 )

• Log likelihood: ℓ(𝜋) = 𝑛 ̄𝑌 ln 𝜋 + 𝑛(1 − ̄𝑌 ) ln(1 − 𝜋).
• Maximum occurs when first derivative vanishes:

𝑑ℓ
𝑑𝜋 = 𝑛 ̄𝑌

𝜋 − 𝑛(1 − ̄𝑌 )
1 − 𝜋 = 0.

• Simplifies to ̂𝜋 = ̄𝑌 .
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MLE for logistic regression in R
m_simple <- glm(diagnosis ~ radius_mean, data = train, family = "binomial")
summary(m_simple)

Call:
glm(formula = diagnosis ~ radius_mean, family = "binomial", data = train)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -15.8086 1.5310 -10.326 <2e-16 ***
radius_mean 1.0662 0.1066 9.998 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 604.40 on 454 degrees of freedom
Residual deviance: 256.54 on 453 degrees of freedom
AIC: 260.54

Number of Fisher Scoring iterations: 6
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The log likelihood
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• Value of log likelihood at MLE: ℓ = −128.2701.
• R reports (residual) deviance: 𝐷 = −2 × ℓ = 256.54
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Multiple logistic regression

• Like in linear regression, often the outcome 𝑌 is influenced by
several predictors 𝑋1, 𝑋2, … , 𝑋𝑝.

• For example: diagnosis depends on radius_mean and
texture_mean:

logit(𝜋) = 𝛼 + 𝛽1 ⋅ radius_mean + 𝛽2 ⋅ texture_mean.

• Parameters 𝛼, 𝛽1, … , 𝛽𝑝 determined through MLE.
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In R
m_multi <- glm(diagnosis ~ radius_mean + texture_mean,

data = train, family = "binomial")
summary(m_multi)

Call:
glm(formula = diagnosis ~ radius_mean + texture_mean, family = "binomial",

data = train)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -20.51694 2.04729 -10.021 < 2e-16 ***
radius_mean 1.09536 0.11727 9.341 < 2e-16 ***
texture_mean 0.21749 0.04034 5.391 7.01e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 604.40 on 454 degrees of freedom
Residual deviance: 223.68 on 452 degrees of freedom
AIC: 229.68

Number of Fisher Scoring iterations: 7
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Interactions between variables

m_inter <- glm(diagnosis ~ radius_mean * texture_mean,
data = train, family = "binomial")

Coefficient Estimate SE z value p value
(Intercept) -8.3046 7.4554 -1.114 0.2653
radius 0.2182 0.5288 0.413 0.6798
texture -0.4133 0.3855 -1.072 0.2836
radius:texture 0.0455 0.0276 1.647 0.0995

Interaction between radius and texture is not significant
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Making predictions (by hand)

What is the probability of a tumor being malignant if the radius is
13 mm?

𝜋(radius_mean = 13) = 1
1 + exp(15.8086 − 1.0662 × 13)

= 0.1247716

No easy formula for confidence interval on the prediction.
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Making predictions (using R)

predict(m_simple,
newdata = data.frame(radius_mean = 13),
type = "response")

1
0.1247961
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Computing a confidence interval for the prediction

Proceeds in three steps:

1 Make a prediction on the logit scale (type = "link")
2 Compute CI on logit scale from SE (se.fit = TRUE)
3 Map CI back to probabilities

For step 3, use plogis to undo the logit transformation:

plogis(𝑥) = 1
1 + exp(−𝑥).
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Computing an CI: example

Step 1: Prediction on the logit scale.
pred <- predict(m_simple,

newdata = data.frame(radius_mean = 13),
type = "link", se.fit = TRUE)

Step 2: CI on the logit scale.
ci_logits <- c(pred$fit - 1.96 * pred$se.fit,

pred$fit + 1.96 * pred$se.fit)
ci_logits

1 1
-2.358216 -1.537335
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Step 3: CI on the original scale (probabilities)
ci_probs <- c(plogis(ci_logits[1]), plogis(ci_logits[2]))
ci_probs

1 1
0.08641491 0.17692307

Original prediction:
pred_probs <- plogis(pred$fit)
pred_probs

1
0.1247961

Conclusion: The predicted probability that a tumor of radius
13mm is malignant is 12.5% (95% CI: [8.6%, 17.7%])
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Making predictions
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Quantifying the strength of an association
Write the logistic regression model in terms of odds as

logit(𝜋) = ln Odds = 𝛼 + 𝛽𝑋.

After some algebra:

𝑒𝛽 = Odds(𝑋 + 1)
Odds(X) .

In other words: 𝑒𝛽 is the odds ratio (OR) associated to a 1-unit
increase in 𝑋.

Breast cancer dataset

Here 𝛽 = 1.0662, so OR = exp(1.0662) = 2.90. An increase
in 1 mm in tumor radius is associated with odds that are 2.90
times higher (risk increase).
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Testing an association

• Often, we want to test whether a model coefficient 𝛽 is
significant.

• Related: check if complex and simple nested models are
equivalent (recall 𝐹 -test from linear regression).

Several ways of testing:
• Wald test (reported in summary): can be conservative
• Likelihood ratio test (via anova command): more power,

preferred
• Score test (not covered)
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Testing an association: Wald test

• Null hypothesis 𝐻0 ∶ 𝛽 = 0, alternative hypothesis
𝐻𝐴 ∶ 𝛽 ≠ 0

• Test statistic follows 𝑁(0, 1) under 𝐻0

𝑧 =
̂𝛽

𝑆𝐸(𝛽) ∼ 𝑁(0, 1) under 𝐻0.

• Reported in the R regression output (summary):

Coefficient Estimate SE z value p value
(Intercept) -20.5169 2.0473 -10.021 < 2e-16
radius_mean 1.0954 0.1173 9.341 < 2e-16
texture_mean 0.2175 0.0403 5.391 7.01e-08
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Testing an association: Likelihood ratio test
Useful for:

• Comparing nested models (simple/complex)
• Testing single coefficient

Hypothesis:
• 𝐻0: simple and complex model are equivalent
• 𝐻𝐴: complex model is better

Test statistic: deviance

𝐷 = −2 ln ℒ(simple)
ℒ(complex)

= −2ℓ(simple) + 2ℓ(complex).

Under 𝐻0, 𝐷 follows a 𝜒2
𝑘 distribution, where 𝑘 is the number of

extra parameters in the complex model.
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Worked out example

Nested models:
• Simple: includes radius_mean only
• Complex: includes both radius_mean and texture_mean.

From R summary (listed as residual deviance) or direct calculation:
• −2ℓ(simple) = 256.54
• −2ℓ(complex) = 223.68

Hence 𝐷 = 256.54 − 223.68 = 32.86 > 3.841459 = 𝜒2
1;0.95.

Conclusion: reject 𝐻0, significant evidence to decide (at 5%
significance level) that complex model is better.
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Likelihood ratio test in R (single variable)

anova(m_simple, m_multi)

Analysis of Deviance Table

Model 1: diagnosis ~ radius_mean
Model 2: diagnosis ~ radius_mean + texture_mean

Resid. Df Resid. Dev Df Deviance
1 453 256.54
2 452 223.68 1 32.864

Compare with critical values for 𝜒2
1 to draw conclusion
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Likelihood ratio test in R (groups of variables)
Nested models:

• Simple: includes radius_mean and texture_mean.
• Complex: adds concavity_mean and symmetry_mean.

R output:
anova(m_multi, m_multi_4)

Analysis of Deviance Table

Model 1: diagnosis ~ radius_mean + texture_mean
Model 2: diagnosis ~ radius_mean + texture_mean + concavity_mean + symmetry_mean

Resid. Df Resid. Dev Df Deviance
1 452 223.68
2 450 129.99 2 93.686

Compare with critical value 𝜒2
2;0.95 = 5.991465 to conclude that

complex model is better.
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Confidence interval for regression parameters

Wald-type approximate (1 − 𝛼) × 100% confidence interval for 𝛽:

̂𝛽 ± 𝑧1−𝛼/2 ⋅ 𝑆𝐸(𝛽)

Breast cancer dataset

95% confidence interval for 𝛽radius_mean:

1.095 ± 1.96 × 0.117 = [0.866, 1.324].
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Confidence interval for regression parameters in R

confint(m_multi)

2.5 % 97.5 %
(Intercept) -24.8846042 -16.8233485
radius_mean 0.8840034 1.3456187
texture_mean 0.1405734 0.2993915

R uses the so-called profile method to compute CI:
• Different from Wald method (narrower CIs, but close)
• Preferred to use this method through R
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Confidence interval for odds ratio

• Recall that exp(𝛽) = OR for a 1-unit change in 𝑋
• (1 − 𝛼) × 100% confidence interval for the OR:

exp ( ̂𝛽 ± 𝑧1−𝛼/2 ⋅ 𝑆𝐸(𝛽)) .

Breast cancer dataset

95% confidence interval for ORradius_mean:

exp(1.095 ± 1.96 × 0.117) = [exp(0.866), exp(1.324)]
= [2.377, 3.759]
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Classification
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Decision boundary (no interaction terms)

• Model: logit(diagnosis) ∼ radius + texture
• Decision boundary is straight line
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Decision boundary (with interaction terms)

• Model:
logit(diagnosis) ∼ radius + texture + radius ∶ texture

• Decision boundary is curved line
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Classification

• Once we have a (logistic) model for 𝜋(𝑋), we can use it to
classify new data 𝑋 as negative (𝑌 = 0) or positive (𝑌 = 1),
by comparing 𝜋(𝑋) with a fixed threshold 𝐶:

𝑌 = 1 if 𝜋(𝑋) > 𝐶, otherwise 𝑌 = 0.

• Performance depends on choice of 𝐶

Breast cancer dataset

We computed earlier that 𝜋(radius_mean = 13) = 0.12.
Assuming that the threshold for malignant samples is 𝐶 = 0.5,
this sample would be classified as benign.
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Confusion matrix
By comparing labels given by our model with “actual” labels, we
can get an idea of the performance of our classifier.

Figure source: https://en.wikipedia.org/wiki/Confusion_matrix
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Performance metrics

Name Definition Value for example
Accuracy (TP + TN)/(P + N) 0.84
Sensitivity (recall) TP / P 0.93
Specificity TN / N 0.67
PPV (precision) TP / PP 0.84
NPV TN / NN 0.84

• Many other metrics exist
• Which one is important depends on the problem
• Metrics can give surprising results in case of unbalanced data
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In R (via caret package)
Confusion Matrix and Statistics

Reference
Prediction B M

B 64 6
M 11 33

Accuracy : 0.8509
95% CI : (0.772, 0.9107)

No Information Rate : 0.6579
P-Value [Acc > NIR] : 3.039e-06

Kappa : 0.6786

Mcnemar's Test P-Value : 0.332

Sensitivity : 0.8462
Specificity : 0.8533

Pos Pred Value : 0.7500
Neg Pred Value : 0.9143

Prevalence : 0.3421
Detection Rate : 0.2895

Detection Prevalence : 0.3860
Balanced Accuracy : 0.8497
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Trading sensitivity and specificity

What is important?
• Diagnostic test: sensitivity (don’t tell people with tumor that

they are healthy). Choose low threshold.
• Classifying email as spam: specificity (don’t put regular email

in the spam folder). Choose high threshold.

By changing the threshold, sensitivity and specificity can be traded
against one another.

• Lowering threshold: Sensitivity ↑, Specificity ↓.
• Increasing threshold: Sensitivity ↓, Specificity ↑.
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Breast cancer dataset

• For 𝐶 = 0.5: sensitivity 0.84

Prediction Reference B M
B 70 13
M 5 26

• For 𝐶 = 0.2: sensitivity 0.85

Prediction Reference B M
B 64 6
M 11 33

54 / 61



Sensitivity and specificity as a function of threshold
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As threshold increases:
• Sensitivity decreases (less true positives)
• Specificity increases (less false positives)
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ROC curve

• By varying 𝐶 from 0 to 1, sensitivity and specificity change
continuously and trace out the Receiver Operator Curve
(ROC).

• The closer the curve sticks to the upper left corner, the better
• Can be used to compare classifiers
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ROC: KNN versus logistic regression
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AUC: Area under the ROC

Single number to quantify performance of classifier:
• AUC = 1.0: distinguishes perfectly between two classes
• AUC = 0.5: classifier no better than guessing randomly
• 0.5 < AUC < 1.0: varying degrees of performance.
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AUC: Link with concordance probability

Concordance probability: probability that classifier will give a
negative sample a lower probability than a positive sample.

The AUC is equal to the concordance probability

AUC = 𝑃(𝜋(𝑥neg) ≤ 𝜋(𝑥pos))

Important for model calibration:
• Often, we don’t care much about probability 𝜋 to belong to

the positive class
• But, want negative samples to have lower probability than

positive samples
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In clinical research

The ROC and AUC are often reported in clinical research.
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Figure and text from Di Donna et al., Concordance of Radiological, Laparoscopic and
Laparotomic Scoring to Predict Complete Cytoreduction in Women with Advanced
Ovarian Cancer. Cancers (2023)
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