Logistic Regression and Classification
Introduction to Statistical Modelling

Prof. Joris Vankerschaver
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Overview

@ Introduction: what are classification problems?
® K-nearest neighbors classification

© Logistic regression

O Classification
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Introduction
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Classification

In many problems, the outcome is a categorical variable:

® Figure out whether mutation is deleterious (yes/no), based on
DNA sequencing data.

® Predict a person’s eye color (blue/brown/green)

® Predict the outcome of surgery (success/failure) for patients
with ovarian cancer, based on patient characteristics

e Classify iris (flower) variety given dimensions of leaves

These problems are examples of classification problems.
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Techniques for classification

® Logistic regression

¢ K-nearest neighbors

® |inear discriminant analysis

® Support vector classification (SVC)
® Decision trees

[ ]

The techniques in bold are discussed in this lecture.

Each technique has its advantages and disadvantages.
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References

® An Introduction to Statistical Learning. Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani. Available

for free online at https://www.statlearning.com/.
® |ogistic regression: sections 4.1 - 4.3
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Dataset

bdiag — Wisconsin breast cancer diagnostic dataset (Nuclear
feature extraction for breast tumor diagnosis. W. Street, W.
Wolberg, O. Mangasarian. Electronic imaging 29 (1993))

® Cell nuclei from 569 tumor samples
® (Classified as malignant or benign
® Features:

® radius of the cell nucleus

® texture (variance of gray-scale
values)
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A first look at the data
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K-nearest neighbors classification
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Principle

® Find K nearest neighbors to x

® Probability of belonging to class i is proportional to number
of neighbors in that class

. o1 K =5

® P(red|X =2) =2 =60%
® P(green|X =1x) =
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Properties

K-nearest neighbor (KNN) classification estimates probabilities

1 |V k()|
P(Y:ﬂX:x):m Z I(y; = j)

Here:

® N g(x) is the set of K nearest datapoints to x
e I(y; =j)is equal to 1 if y; = j and to 0 otherwise
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Advantages and disadvantages

Advantages:

® No “training” necessary
® Robust to outliers
® Can easily deal with more than 2 labels

Disadvantages:

® Not very interpretable — why was class decided?
® Memory-intensive
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Decision boundary (K = 5)
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Logistic regression
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Reminder: odds

® |f 7 is the probability of having a malignant tumor, then the
odds are defined as

Odds =

1—m7

For example: if 7 = 0.8 then Odds = 4, meaning that for
every benign tumor there are 4 malignant ones (on average).

® Odds range from 0 (impossible event) to +oo (almost
certain).
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Reminder: odds ratio

® Odds ratio (OR): indicates by how much the odds change
between two treatments. For example: suppose in the
treatment group the probability of a malignant tumor drops to
mp = 0.75 (compared to m~ = 0.8 in the untreated group).
Then 0dds(T) 3
s
OR= ——F"F5=-=0.75
Odds(C) 4
® |f OR < 1, then the odds for treatment 1 decrease compared
to treatment 2. If OR > 1, the odds increase.
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Log-odds (logits)
Often it makes sense to work with the logarithm of the odds
(logits):

logit() = In Odds = In (1 T ) .

-7
To convert back to probabilities, use the logistic function:

1

T= 1+ e tosit”

Logits are unbounded: logit — +o00 for p — 0,1
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Regression for classification

® Given data (X,,Y)),...,(X,,,Y,,) where:

® Qutcomes Y] are categorical (0 or 1)
® Predictors X, can be continuous or discrete

® We will model Y; as a Bernoulli random variable (0 or 1) with
probability (X ):

Y, =0 with probability 7(X;)
Y, =1 with probability 1 — (X))

® Now we need to determine how 7(X) depends on X.
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|dea 1: linear regression (bad)

® One predictor X = radius_mean, outcome Y = 0 (benign)

or Y =1 (malignant).
® Assume m(X) = a+ X and determine «, 3 through linear

regression.

Problems:

® Fitted probabilities can take on values outside [0, 1].
® Does not easily generalize to more than two classes.

19/61



|dea 2: logistic regression (better)

® Let 7(X) depend on X through the logistic function

1
T 1+ exp(—(a+ BX))

m(X)

® Nonlinear model in parameters o, 3
® Alternatively, apply the logit transformation

logit(7) = a + SX.

® Linear in the logits.

20/61



Determining the regression parameters: MLE

¢ Likelihood function £: probability of observing the data
given the parameters «, (3:

Ll 8) = [[P(Y = ViIX = X)),
=1

where

P(Y = ¥ X = X,) = m(X,)%:(1 — n(X,))* .

1
is the probability of observing one data point (X, Y;).

® In practice, often better to use the log of the likelihood:

o, B) =InL(av, B).
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Determining the regression parameters: MLE

® Maximum likelihood estimation (MLE): find parameters
that maximize £(a, 3) or ¢, 3)
® Finding maximum: set partial derivatives (score functions)
equal to zero:
or 0 or
oa 08
® Complicated equations, usually maximum cannot be found
analytically (unlike least squares)
® Use numerical methods to find maximum (R does this
automatically with the glm command)

0.
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Simplified example: MLE for binomial variable

® Suppose there are no predictors. We just have a bunch of
categorical outcomes Y; = 0,1, e.g.

Y =(0,0,1,0,1,0,...,1,1,0,0,1)

® |n semester 1 we saw that a good estimate for the probability
m = P(Y = 1) is given by the proportion of 1s in the data:

1 X _
T = — }2 =Y.
wN;

® \We'll use MLE to re-derive this result.
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Simplified example: MLE for binomial variable

Likelihood

L(m) =L, P(Y =Y))

— 7Tn)7<1 _ ,n_>n(1—§_/)

Maximum occurs when first derivative vanishes:

4 _@_n(l—}})

dr 7« 1—m =0

e Simplifiessto 7 =Y.

Log likelihood: £(7) = nY Inm 4+ n(1 —Y)In(1 — 7).
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MLE for logistic regression in R

m_simple <- glm(diagnosis ~ radius_mean, data = train, family = "binomial")
summary (m_simple)

Call:
glm(formula = diagnosis ~ radius_mean, family = "binomial", data = train)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -15.8086 1.5310 -10.326 <2e-16 *xx
radius_mean 1.0662 0.1066 9.998 <2e-16 **x*
Signif. codes: 0 '#**' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 604.40 on 454 degrees of freedom
Residual deviance: 256.54 on 453 degrees of freedom
AIC: 260.54

Number of Fisher Scoring iterations: 6
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The log likelihood
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® Value of log likelihood at MLE: ¢ = —128.2701.
® R reports (residual) deviance: D = —2 x ¢ = 256.54
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Multiple logistic regression

® Like in linear regression, often the outcome Y is influenced by

several predictors X, Xy, ..., X,,.
® For example: diagnosis depends on radius_mean and

texture_mean:
logit(7) = a + (3 - radius_mean + [, - texture_mean.

® Parameters «, (3, ..., 3, determined through MLE.
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In R

m_multi <- glm(diagnosis ~ radius_mean + texture_mean,
data = train, family = "binomial")
summary (m_multi)

Call:
glm(formula = diagnosis ~ radius_mean + texture_mean, family = "binomial",
data = train)

Coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) -20.51694 2.04729 -10.021 < 2e-16 **x
radius_mean 1.09536 0.11727 9.341 < 2e-16 *x*x*
texture_mean 0.21749 0.04034 5.391 7.01e-08 ***

Signif. codes: O 'xxkx' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 604.40 on 454 degrees of freedom
Residual deviance: 223.68 on 452 degrees of freedom

AIC: 229.68

Number of Fisher Scoring iteratiomns: 7
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Interactions between variables

m_inter <- glm(diagnosis ~ radius_mean * texture_mean,

= train, family = "binomial")
Coefficient Estimate SE zvalue pvalue
(Intercept) -8.3046 7.4554  -1.114  0.2653
radius 0.2182 0.5288 0.413  0.6798
texture -0.4133 0.3855  -1.072 0.2836
radius:texture 0.0455 0.0276 1.647 0.0995

Interaction between radius and texture is not significant
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Making predictions (by hand)

What is the probability of a tumor being malignant if the radius is
13 mm?

1
1 + exp(15.8086 — 1.0662 x 13)
=0.1247716

m(radius_mean = 13) =

No easy formula for confidence interval on the prediction.
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Making predictions (using R)

predict(m_simple,
newdata = data.frame(radius mean = 13),
type = "response")

1
0.1247961
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Computing a confidence interval for the prediction

Proceeds in three steps:

@ Make a prediction on the logit scale (type = "link")
® Compute Cl on logit scale from SE (se.fit = TRUE)
©® Map Cl back to probabilities

For step 3, use plogis to undo the logit transformation:

. 1
p|0gls<x) = HTI)(_'%')
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Computing an Cl: example

Step 1: Prediction on the logit scale.

pred <- predict(m_simple,
newdata = data.frame(radius_mean = 13),
type = "link", se.fit = TRUE)

Step 2: Cl on the logit scale.

ci_logits <- c(pred$fit - 1.96 * pred$se.fit,
pred$fit + 1.96 * pred$se.fit)
ci_logits

1 1
-2.358216 -1.537335
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Step 3: Cl on the original scale (probabilities)
ci_probs <- c(plogis(ci_logits[1]), plogis(ci_logits[2]))

ci_probs

1 1
0.08641491 0.17692307
Original prediction:
pred_probs <- plogis(pred$fit)
pred_probs

1
0.1247961

Conclusion: The predicted probability that a tumor of radius
13mm is malignant is 12.5% (95% ClI: [8.6%, 17.7%)])
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Quantifying the strength of an association
Write the logistic regression model in terms of odds as
logit(m) = In Odds = a + 5X.

After some algebra:

5 Odds(X +1)
Odds(X)

In other words: e” is the odds ratio (OR) associated to a 1-unit
increase in X.

1 Breast cancer dataset

Here 8 = 1.0662, so OR = exp(1.0662) = 2.90. An increase

in 1 mm in tumor radius is associated with odds that are 2.90
times higher (risk increase).
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Testing an association

e Often, we want to test whether a model coefficient 3 is
significant.

® Related: check if complex and simple nested models are
equivalent (recall F'-test from linear regression).

Several ways of testing:

® \Wald test (reported in summary): can be conservative

® Likelihood ratio test (via anova command): more power,
preferred

® Score test (not covered)
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Testing an association: Wald test

® Null hypothesis H, : 5 = 0, alternative hypothesis
Hy:B#0

® Test statistic follows N(0,1) under H,,
_ B
z =
SE(B)

~ N(0,1) under H,.

® Reported in the R regression output (summary):

Coefficient Estimate SE zvalue pvalue

(Intercept) -20.5169 2.0473 -10.021 < 2e-16
radius__mean 1.0954 0.1173 9.341 < 2e-16
texture_mean 0.2175 0.0403 5.391 7.01e-08
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Testing an association: Likelihood ratio test

Useful for:

e Comparing nested models (simple/complex)
® Testing single coefficient

Hypothesis:

® H,: simple and complex model are equivalent
® H,: complex model is better

Test statistic: deviance

L(simple)
L(complex)

= —2/(simple) 4+ 2¢(complex).

D=-2In

Under H,, D follows a X2 distribution, where k is the number of
extra parameters in the complex model.
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Worked out example

Nested models:

® Simple: includes radius_mean only
® Complex: includes both radius_mean and texture_mean.

From R summary (listed as residual deviance) or direct calculation:

e —2/(simple) = 256.54
e —2/(complex) = 223.68

Hence D = 256.54 — 223.68 = 32.86 > 3.841459 = x3) g5.

Conclusion: reject H,, significant evidence to decide (at 5%
significance level) that complex model is better.
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Likelihood ratio test in R (single variable)

anova(m_simple, m_multi)
Analysis of Deviance Table

Model 1: diagnosis ~ radius_mean

Model 2: diagnosis ~ radius_mean + texture_mean
Resid. Df Resid. Dev Df Deviance

1 453 256.54

2 452 223.68 1 32.864

Compare with critical values for x? to draw conclusion

41/61



Likelihood ratio test in R (groups of variables)
Nested models:

® Simple: includes radius_mean and texture_mean.
® Complex: adds concavity_mean and symmetry_mean.

R output:

anova(m_multi, m_multi_4)

Analysis of Deviance Table

Model 1: diagnosis ~ radius_mean + texture_mean

Model 2: diagnosis ~ radius_mean + texture_mean + concavit:
Resid. Df Resid. Dev Df Deviance

1 452 223.68

2 450 129.99 2 93.686

Compare with critical value Xg;o.% = 5.991465 to conclude that
complex model is better.
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Confidence interval for regression parameters

Wald-type approximate (1 — «) x 100% confidence interval for /3

Bi Zlfoz/2 ’ SE(B)

1 Breast cancer dataset

95% confidence interval for ,,4ius mean:

1.095 + 1.96 x 0.117 = [0.866, 1.324].
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Confidence interval for regression parameters in R

confint(m_multi)

2.5 % 97.5 ¥
(Intercept) -24.8846042 -16.8233485
radius_mean 0.8840034 1.3456187
texture_mean 0.1405734 0.2993915

R uses the so-called profile method to compute ClI:

¢ Different from Wald method (narrower Cls, but close)
® Preferred to use this method through R
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Confidence interval for odds ratio

® Recall that exp() = OR for a 1-unit change in X
® (1—a) x 100% confidence interval for the OR:

exp (BA:E 21-a/2” SE(ﬁ)) .

1 Breast cancer dataset

95% confidence interval for OR

radius_mean"

exp(1.095 + 1.96 x 0.117) = [exp(0.866), exp(1.324)]
— [2.377,3.759]
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Classification
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Decision boundary (no interaction terms)

® Model: logit(diagnosis) ~ radius + texture
® Decision boundary is straight line
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Decision boundary (with interaction terms)

® Model:
logit(diagnosis) ~ radius + texture + radius : texture
® Decision boundary is curved line

texture_mean

20
radius_mean
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Classification

® Once we have a (logistic) model for m(X), we can use it to
classify new data X as negative (Y = 0) or positive (Y = 1),
by comparing 7m(X) with a fixed threshold C"

Y =1 ifn(X)>C, otherwise Y = 0.

® Performance depends on choice of C

1 Breast cancer dataset

We computed earlier that m(radius_mean = 13) = 0.12.
Assuming that the threshold for malignant samples is C' = 0.5,
this sample would be classified as benign.
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Confusion matrix

By comparing labels given by our model with “actual” labels, we
can get an idea of the performance of our classifier.

Predicted condition

Total population

Positive (PP) Negative (PN)
=P+N

Positive (P) True positive (TP) | False negative (FN)

Negative (N) | False positive (FP) | True negative (TN)

Actual condition

Figure source: https://en.wikipedia.org/wiki/Confusion_matrix
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Performance metrics

Name Definition Value for example
Accuracy (TP +TN)/(P + N) 0.84
Sensitivity (recall) TP /P 0.93
Specificity TN / N 0.67
PPV (precision) TP / PP 0.84
NPV TN / NN 0.84

® Many other metrics exist
® Which one is important depends on the problem
® Metrics can give surprising results in case of unbalanced data
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In R (via caret package)

Confusion Matrix and Statistics

Reference
Prediction B M

B 64 6

M 11 33

Accuracy : 0.8509
95% CI : (0.772, 0.9107)
No Information Rate : 0.6579
P-Value [Acc > NIR] : 3.039e-06
Kappa : 0.6786

Mcnemar's Test P-Value : 0.332

Sensitivity : 0.8462
Specificity : 0.8533

Pos Pred Value : 0.7500

Neg Pred Value : 0.9143
Prevalence : 0.3421
Detection Rate : 0.2895
Detection Prevalence : 0.3860
Balanced Accuracy : 0.8497

'Positive' Class : M 52/61



Trading sensitivity and specificity

What is important?

® Diagnostic test: sensitivity (don't tell people with tumor that
they are healthy). Choose low threshold.

¢ Classifying email as spam: specificity (don't put regular email
in the spam folder). Choose high threshold.

By changing the threshold, sensitivity and specificity can be traded
against one another.

® Lowering threshold: Sensitivity T, Specificity .
® Increasing threshold: Sensitivity |, Specificity 7.
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1 Breast cancer dataset

® For C' = 0.5: sensitivity 0.84

Prediction Reference B M

B 70 13

M 5 26
® For C = 0.2: sensitivity 0.85

Prediction Reference B M

B 64 6

M 11 33
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Sensitivity and specificity as a function of threshold

C(ThUrZZhold)
As threshold increases:

® Sensitivity decreases (less true positives)
® Specificity increases (less false positives)
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ROC curve

® By varying C' from 0 to 1, sensitivity and specificity change
continuously and trace out the Receiver Operator Curve
(ROC).

® The closer the curve sticks to the upper left corner, the better

® Can be used to compare classifiers

ROC Curve (AUC = 0.9402)

sensitivity

050
specificity
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ROC: KNN versus logistic regression
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AUC: Area under the ROC

Single number to quantify performance of classifier:

® AUC = 1.0: distinguishes perfectly between two classes
e AUC = 0.5: classifier no better than guessing randomly
® (0.5 < AUC < 1.0: varying degrees of performance.
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AUC: Link with concordance probability

Concordance probability: probability that classifier will give a
negative sample a lower probability than a positive sample.

The AUC is equal to the concordance probability

AUC = P(m(2peg) < T(Tp0s))

Important for model calibration:

® Often, we don’t care much about probability 7 to belong to
the positive class

® But, want negative samples to have lower probability than
positive samples
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In clinical research

The ROC and AUC are often reported in clinical research.
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False positive rate

Radiologic PCI
—— Laparoscopic PCI
Laparotomic PCI

Figure 4. Receiver operating characteristic (ROC) curve comparing radiologic (blue line), laparoscopic
(red line) and laparotomic (green line) peritoneal cancer index (PCI) in women who underwent

primary debulking surgery.
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Regarding the PCI score (Figure 4), the best performance to predict residual disease,
with an AUC 0.83, CI 95% 0.71-0.95 was observed applying the laparotomic PCI, while
the accuracy of the radiological PCI and laparoscopic PCI was AUC 0.64, CI 95% 0.49-0.78
and AUC 0.73, CI 95% 0.59-0.86, respectively. The cut-off value associated with the best
performance of the laparotomic PCI score was 18.

Figure and text from Di Donna et al., Concordance of Radiological, Laparoscopic and
Laparotomic Scoring to Predict Complete Cytoreduction in Women with Advanced
Ovarian Cancer. Cancers (2023)
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