# Principal component analysis: examples Introduction to Statistical Modelling

Prof. Joris Vankerschaver

#### Examples

#### 1 Adulteration of olive oil

- Malavi, Derick, Amin Nikkhah, Katleen Raes, and Sam Van Haute. 2023. "Hyperspectral Imaging and Chemometrics for Authentication of Extra Virgin Olive Oil: A Comparative Approach with FTIR, UV-VIS, Raman, and GC-MS." Foods 12 (3): 429. https://doi.org/10.3390/foods12030429
- 2 Human faces dataset
- https://scikit-learn.org/0.19/datasets/olivetti\_faces.html

# Adulteration of olive oil

# Problem setting

Extra virgin olive oil (EVOO):

- High quality
- Flavorful
- Health benefits
- More expensive (than regular oil)

To reduce cost, EVOO is often **adulterated** with other, cheaper food oils.



#### Research questions

- Classification: Can we detect whether a given EVOO sample has been adulterated?
  - Yes/no answer (categorical)
- 2 Regression: Can we detect the degree of adulteration?
  - Continuous answer, from 0% (no adulteration) to 100%

# Hyperspectral imaging (HSI)



- Measures reflected infrared light (700-1800 nm) off sample
- Provides a non-destructive way of testing sample

# Hyperspectral "images" (spectra)



- HSI measures reflectance at 224 wavelengths from 700 to 1800 nm
- Reflectance at given wavelength is determined by molecular features of sample

#### Experimental setup

Samples to test (61 total):

- 13 different kinds of unadulterated EVOO
- 6 vegetable oils
- 42 adulterated mixtures
  - EVOO + one of 6 vegetable oils at one of 7 different percentages (from 1% to 20%)

Each sample is imaged 3 times: 183 samples

Each sample produces a HSI spectrum of length 224

#### Data matrix

Data matrix has 183 rows (samples) and 224 columns (spectra). In addition, we have some metadata:

- Name of sample
- Degree of adulteration

| 0  | Sample ID/Wavelength | ÷ Sample ^ | Classification $$ | % Adulteration $\hat{~}$ | 938.9400020000005 | 942.4500120000002 | 945.96002199999998 |
|----|----------------------|------------|-------------------|--------------------------|-------------------|-------------------|--------------------|
| 1  | Monini Classico EVOO | 1          | Olive             | 0                        | 0.650031          | 0.655155          | 0.704436           |
| 2  | Monini Classico EVOO | 2          | Olive             | 0                        | 0.646796          | 0.651895          | 0.701250           |
| 3  | Monini Classico EVOO | 3          | Olive             | 0                        | 0.651539          | 0.656589          | 0.704596           |
| 4  | Fontana EVOO         | 4          | Olive             | 0                        | 0.649832          | 0.654923          | 0.703678           |
| 5  | Fontana EVOO         | 5          | Olive             | 0                        | 0.645579          | 0.650628          | 0.698899           |
| 6  | Fontana EVOO         | 6          | Olive             | 0                        | 0.647227          | 0.652270          | 0.700465           |
| 7  | Divella EVOO         | 7          | Olive             | 0                        | 0.646414          | 0.651584          | 0.700632           |
| 8  | Divella EVOO         | 8          | Olive             | 0                        | 0.649089          | 0.653915          | 0.701284           |
| 9  | Divella EVOO         | 9          | Olive             | 0                        | 0.639494          | 0.645490          | 0.701185           |
| 10 | EVOO from Spain      | 10         | Olive             | 0                        | 0.643378          | 0.648587          | 0.699279           |
| 11 | EVOO from Spain      | 11         | Olive             | 0                        | 0.646907          | 0.651400          | 0.696273           |
| 12 | EVOO from Spain      | 12         | Olive             | 0                        | 0.640076          | 0.645553          | 0.697743           |
| 13 | Borges EVOO          | 13         | Olive             | 0                        | 0.645270          | 0.650284          | 0.698843           |
| 14 | Borges EVOO          | 14         | Olive             | 0                        | 0.641859          | 0.646935          | 0.695553           |
| 15 | Borges EVOO          | 15         | Olive             | 0                        | 0.639936          | 0.645475          | 0.698057           |
| 16 | Premium Oil EVOO     | 16         | Olive             | 0                        | 0.640139          | 0.645473          | 0.696361           |
| 17 | Premium Oil EVOO     | 17         | Olive             | 0                        | 0.639872          | 0.645166          | 0.695145           |
| 18 | Premium Oil EVOO     | 18         | Olive             | 0                        | 0.645821          | 0.650525          | 0.695868           |

#### A first look at the data

Averaged spectra for each kind of oil (EVOO + 6 others)



Plot shows small differences between spectra: **promising sign** that we will be able to address the research questions.

#### Principal component analysis: scree plot

Not all 224 wavelengths are equally informative. Much of our dataset is redundant.



This is confirmed by the scree plot:

- First 2 PCs explain 94% of variance in the data
- First 3 PCs: almost 100%

#### Principal component analysis: loadings vectors

Loadings vectors are linear combinations of features, tell us how features contribute to variability in dataset.



For our example:

- Loadings vector 1: where do spectra differ the most?
- Loadings vector 2: where is next source of variability located?

#### Principal component analysis: scores



Can we tell pure and adulterated samples apart?

• **Yes**: clearly different on score plot.

Can we predict the percentage of adulteration?

• No: hard to distinguish from first 2 PCs alone.

Predicting the percentage of adulteration

We will need more than 2 PCs to correctly predict percentage of adulteration.

Two different approaches:

- Principal component regression:
  - 1 Compute PCs
  - 2 Do a regression on PCs
- Partial least squares regression:
  - Compute factors that are most variable and most correlated with outcome
  - 2 Do a regression on resulting factors

Both models can be built using the pls package in R.

For this example we will use only the 42 adulterated mixtures. Each mixture is imaged 3 times:  $42 \times 3 = 126$  samples Predictors: 224 wavelengths Outcome: percentage of adulteration (1%-20%)

# Performing a fair assessment: train/test split

Evaluating the model using the same data used to train it leads to an **optimistic** estimate of the model's performance.

To avoid this bias, randomly select and set aside some data for testing, and use the remaining data to develop the model.

| Test data | Train data |
|-----------|------------|
| (20%)     | (80%)      |

Adulteration prediction:

- Train dataset: 101 samples
- Test dataset: 25 samples

Can you spot an issue with this?

#### Performing a fair assessment: data leakage

- Each of the 42 mixtures is imaged 3 times.
- Presumably these replicates are very similar
- If some replicates end up in the test dataset and some in the train dataset: model gains unfair advantage.



Avoiding data leakage: stratified train/test split

Main idea: develop model with some of the mixtures, test performance on different mixtures:

- 1 Randomly select 80% of mixtures
- 2 Put all 3 replicates for those 80% in the training set
- 3 Put the remainder in the test set.



# Building the PCR/PLS models

PCR model:

PLS model: replace pcr by plsr.

Arguments:

- scale = FALSE: Don't scale spectra (same units)
- ncomp = 10: Build model with up to 10 components
- validation = "CV": Assess performance of model with i components using cross-validation

# Performance of PCR/PLS models



Both models do well on the test data.

### Optimal number of components: PCR

(obtained via selectNcomp(method = "onesigma"))



- Optimal number of components: 7
- RMSEP for 7 components: 1.796

# Optimal number of components: PLS



Number of components

- Optimal number of components: 9
- RMSEP for 9 components: 1.627

#### Conclusions

Can we detect whether a given EVOO sample has been adulterated?

- Yes: Look at score plot
- More conclusive answer next lecture

Can we detect the degree of adulteration?

• Yes: Build PCR or PLS model

# Human faces dataset

There are no slides for this part of the lecture. Instead, the lecture will follow the discussion in the following book chapter: https://jvkersch.github.io/ISM/pca-applications.html#sec-eigenfaces