# Principal component analysis: theory and concepts Introduction to Statistical Modelling

Prof. Joris Vankerschaver

# Goal of dimensionality reduction

- Pre-processing
  - Remove collinear predictors (multicollinearity)
- Computational efficiency
  - Retain import features to speed up computational processing
- Visualization

At the end of this lecture, you should be able to:

- 1 Explain the ideas behind PCA
- 2 Do a PCA by hand given a covariance matrix
- 3 Do a PCA with R
- **4** Interpret and explain the PCA results
- **5** Build and explain a PCR model

#### References

- *Introduction to statistical modeling*. Chapter available on Ufora.
- An Introduction to Statistical Learning. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. Available for free online at https://www.statlearning.com/.
  - PCA: section 6.3

## Reminder: multicollinearity

Bodyfat dataset: 20 observations, predict amount of body fat from three body measurements.

• Linear regression model:

 $\begin{array}{l} \texttt{bodyfat} = 117.085 \\ + \ 4.334 \cdot \texttt{triceps} \\ - \ 2.857 \cdot \texttt{thigh} \\ - \ 2.186 \cdot \texttt{midarm} \end{array}$ 

• Do you see anything wrong with this?



Call: lm(formula = bodyfat ~ ., data = bodyfat) Residuals: Min 1Q Median 3Q Max -3.7263 -1.6111 0.3923 1.4656 4.1277

Coefficients:

|                            | Estimate | Std. Error | t value | Pr(> t ) |
|----------------------------|----------|------------|---------|----------|
| (Intercept)                | 117.085  | 99.782     | 1.173   | 0.258    |
| triceps.skinfold.thickness | 4.334    | 3.016      | 1.437   | 0.170    |
| thigh.circumference        | -2.857   | 2.582      | -1.106  | 0.285    |
| midarm.circumference       | -2.186   | 1.595      | -1.370  | 0.190    |

Residual standard error: 2.48 on 16 degrees of freedom Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641 F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

# Principal component analysis

## Directions of maximal variability

Intuitively:

- · Find directions of maximal variability in the dataset
- Discard directions in which there is neglible variability



#### Directions of less variability

Since triceps and thigh are highly correlated, specifying both is superfluous. What do we lose if we throw away one of these variables?



9/44

#### Notation

Dataset:

- N observations  $\mathbf{x}_k$  ,  $k=1,\ldots,N$
- Each observation is a (column) vector in  $\mathbb{R}^D$

Data matrix:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix} \in \mathbb{R}^{N \times D}$$

Columns of the data matrix:

- Referred to as features, predictors, independent variables
- Denoted by  $\mathbf{X}_i, \ i=1,\ldots,D$

# Notation: example (body fat dataset)

- 20 observations with 3 features each
- Data matrix is  $20 \times 3$  matrix
- Features:
  - X<sub>1</sub>: triceps.skinfold.thickness
  - $\mathbf{X}_2$ : thigh.circumference
  - X<sub>3</sub>: midarm.circumference

#### The covariance matrix

Given observations  $\mathbf{x}_1,\ldots,\mathbf{x}_N\in\mathbb{R}^D$  , the variance-covariance matrix  $\mathbf{S}$  is defined as:

$$\mathbf{S} = \frac{1}{N} \sum_{k=1}^{N} \left( \mathbf{x}_k \mathbf{x}_k^T - \bar{\mathbf{x}} \bar{\mathbf{x}}^T \right).$$

Structure: variances and covariances between components of the data.

$$\mathbf{S} = \begin{bmatrix} \mathsf{Var}(x_1) & \mathsf{Cov}(x_1, x_2) & \cdots & \mathsf{Cov}(x_1, x_D) \\ \mathsf{Cov}(x_2, x_1) & \mathsf{Var}(x_2) & \cdots & \mathsf{Cov}(x_2, x_D) \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(x_D, x_1) & \mathsf{Cov}(x_D, x_2) & \cdots & \mathsf{Var}(x_D) \end{bmatrix}$$

#### The covariance matrix: examples



Clearly the covariance matrix will help us find directions of maximum variability, but how?

#### Linear combination of features

• The first principal component Z<sub>1</sub> is a linear combination of the columns of X:

$$\mathbf{Z}_1 = v_1 \mathbf{X}_1 + \dots + v_D \mathbf{X}_D,$$

where we will choose the coefficients  $\boldsymbol{v}_i$  so that the variances is maximal, in some sense.

• The coefficients  $\boldsymbol{v}_i$  are referred to as the loadings and the vector

$$\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_D \end{bmatrix}$$

is the loadings vector.

• Variance of  $\mathbf{Z}_1$ :

$$\mathsf{Var}(\mathbf{Z}_1) = \mathbf{v}^T \mathbf{S} \mathbf{v}.$$

## Maximizing the variance

- Idea: choose loadings v so that Var(Z<sub>1</sub>) is maximal.
- Problem: just by increasing the norm of v, variance can become as large as we want. Solution: impose that ||v|| = 1.

PC1: maximization of variance

The loadings vector  ${\bf v}$  for the first principal component is found by solving the following maximization problem:

maximize  $\mathbf{v}^T \mathbf{S} \mathbf{v}$  so that  $\mathbf{v}^T \mathbf{v} = 1$ .

#### Geometric interpretation

- **Z**<sub>1</sub>: projection of data on the line in the direction of **v**.
- Find direction **v** so that variance is maximal (blue)



Through Lagrange multipliers, can show that maximizing variance is equivalent to finding eigenvalues and eigenvectors of S.

#### PC1: eigenvalues

The loadings vector  $\mathbf{v}$  for the first principal component is the eigenvector of  $\mathbf{S}$  with the largest eigenvalue:

$$\mathbf{S}\mathbf{v} = \lambda\mathbf{v}$$

Eigenvectors are typically quite efficient to compute.

## Amount of variance explained

Take the eigenvalue equation

 $\mathbf{Sv} = \lambda \mathbf{v},$ 

and left-multiply by  $\mathbf{v}^T$  to get

$$\lambda = \lambda \mathbf{v}^T \mathbf{v} = \mathbf{v}^T \mathbf{S} \mathbf{v} = \mathsf{Var}(\mathbf{Z}_1).$$

#### i Eigenvalues and eigenvectors

- The largest eigenvalue of S is equal to the variance contained in ("explained by") the first principal component Z<sub>1</sub>.
- The corresponding eigenvector gives the loadings vector v.

## Example



The loadings vectors may point in the opposite direction of what you expected... Why is this not a problem?

#### The remaining principal components

Next principal components  $Z_2, Z_3, ...$  involve variation in the data after  $Z_1$  has been taken into account.

• For  $\mathbf{Z}_2$ :

maximize  $\mathsf{Var}(\mathbf{Z}_2)$  so that  $\mathsf{Cov}(\mathbf{Z}_1,\,\mathbf{Z}_2)=0$ 

• Equivalent to: find second largest eigenvalue  $\lambda_2$  and eigenvector  $\mathbf{v}_2.$ 

Same story for remaining principal components.

#### i Note

The principal components are *uncorrelated* linear combinations of features that *maximize variance*.

How many principal components are there?

Recall:

- S is a symmetric  $D \times D$  matrix
- Such a matrix always has D eigenvalues and eigenvectors

When  $D \leq N$  (more data points than features)

• In general, D non-zero principal components

When D > N:

- S has rank at most N: N non-zero principal components
- Can happen in high-dimensional datasets (e.g. gene assays)

#### Percentage of variance explained

- Eigenvalue  $\lambda_i$  is amount of variance explained by PC i.
- Total amount of variance:  $\lambda_1 + \lambda_2 + \dots + \lambda_D$
- Percentage of variance explained by PC i:

$$\frac{\lambda_i}{\lambda_1 + \dots + \lambda_D}$$

In many cases, the first few PCs will explain the majority of variance (80% to 90%).

**Dimensionality reduction:** we can omit the remaining principal components with only a small loss of information

### Example



Blue: first PC, red: second PC.

Worked out example (by hand)

Dataset is chosen so that

$$\mathbf{S} = \begin{bmatrix} 5 & 2\\ 2 & 2 \end{bmatrix}.$$

Eigenvalues:

$$\lambda_1 = 6, \quad \lambda_2 = 1.$$

Eigenvectors:

$$\mathbf{v}_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -1\\ 2 \end{bmatrix}.$$



Worked out example (with R)

```
prcomp(df)
```

```
Standard deviations (1, ..., p=2):
[1] 2.44949 1.00000
```

Rotation (n x k) = (2 x 2): PC1 PC2 X 0.8944272 -0.4472136 Y 0.4472136 0.8944272

Note:

- Standard deviations are square roots of eigenvalues
- Columns of rotation matrix give loadings vectors

#### Example: body fat dataset

```
pca <- prcomp(bodyfat_predictors)</pre>
pca
```

```
Standard deviations (1, ..., p=3):
[1] 7.2046011 3.7432587 0.1330841
```

```
Rotation (n \times k) = (3 \times 3):
```

thigh.circumference

midarm.circumference

PC1 PC2 PC3 triceps.skinfold.thickness 0.6926671 0.1511979 0.7052315 0.6985058 -0.3842734 -0.6036751 0.1797272 0.9107542 - 0.3717862

## Percentage of variance explained

summary(pca)

Importance of components:

PC1PC2PC3Standard deviation7.20463.74330.13308Proportion of Variance0.78720.21250.00027Cumulative Proportion0.78720.99971.00000

- First 2 PCs explain over 99% of variance in data
- Interpretation:

$$\begin{split} \mathsf{PC}_1 &= 0.693 \cdot \texttt{triceps} + 0.699 \cdot \texttt{thigh} + 0.179 \cdot \texttt{midarm} \\ \mathsf{PC}_2 &= 0.151 \cdot \texttt{triceps} - 0.384 \cdot \texttt{thigh} - 0.910 \cdot \texttt{midarm} \end{split}$$

## Standardizing the features

Often, data are standardized before running PCA:

$$\mathbf{Y}_i = \frac{\mathbf{X}_i - \bar{\mathbf{X}}_i}{\mathsf{SD}(\mathbf{X}_i)}$$

- Standardization puts all features on the same scale and affects the outcome of your PCA.
- Often a good idea when features have different units (e.g. mm, Watt, sec).
- Not a good idea when features have the same units (e.g. pixel intensities in an image).

In R: prcomp(df, center = TRUE, scale = TRUE).

# Interpretation of PCA results

# Score plot

- Scatter plot of two PC (usually PC1 and PC2)
- Can be used to spot patterns in data (see later)



## Loadings plot

- Shows how much each variable contributes to each PC
- Useful to discern patterns in PCs



# Scree plot

- Shows percentage of variance explained per PC
- Useful to determine the PCs that contribute most to variance
- Can be made with R's screeplot command, but better to make your own (it's just a line plot)



### Selecting the number of principal components to retain

Many heuristics exist for selecting "optimal" number of PCs:

- Explain fixed percentage (e.g. 80%) of variance
- "Elbow" in scree plot

Can also determine number of PCs dynamically (e.g. if doing regression on PCs, look at  $R^2$ )



Image credit: https://en.wikipedia.org/wiki/Scree (Kevin Lenz, CC BY-SA 2.5)

# **Biplot**

- Biplot = loadings plot + score plot
- Numbers: data for first two PC
- Arrows: contribution of variables to first two PC

biplot(pc)



## Principal component regression

Principal component regression (PCR)

Idea:

- Do a PCA (usually with standardized features)
- Build a linear model on reduced number of PCs

Why do we do this?

- PCs are uncorrelated, so takes care of multicollinearity
- Results in a simpler model where only important features play a role

Not always the right thing to do, alternatives exist (e.g. ridge regression, see later)

#### PCR by hand: starting with PC 1

```
pc1 <- pc$x[, "PC1"]
model_1 <- lm(bodyfat$bodyfat ~ pc1)
summary(model_1)</pre>
```

Call: lm(formula = bodyfat\$bodyfat ~ pc1) Residuals: Min 10 Median 30 Max -5.1357 -1.8821 0.2682 1.7107 3.4992 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 20.19500 0.58688 34.411 < 2e-16 \*\*\* 0.61366 0.08358 7.343 8.13e-07 \*\*\* pc1 Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.625 on 18 degrees of freedom Multiple R-squared: 0.7497, Adjusted R-squared: 0.7358 F-statistic: 53.91 on 1 and 18 DF, p-value: 8.128e-07

## PCR by hand: adding PC 2

```
Call:
lm(formula = bodyfat$bodyfat ~ pc1 + pc2)
Residuals:
   Min 10 Median 30
                                Max
-3.9876 -1.8822 0.2562 1.3209 4.0285
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.19500 0.56604 35.678 < 2e-16 ***
pc1
       0.61366 0.08061 7.613 7.12e-07 ***
          -0.23785 0.15514 -1.533 0.144
pc2
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.531 on 17 degrees of freedom Multiple R-squared: 0.7801, Adjusted R-squared: 0.7542 F-statistic: 30.15 on 2 and 17 DF, p-value: 2.564e-06

#### Aside: variance inflation factors

Reminder: principal components are uncorrelated by definition, so all the VIFs will be equal to 1.



Index

PCR by hand: putting together the final model

• We would probably select model\_1:

```
\texttt{bodyfat} = 20.195 + 0.614 \cdot \texttt{PC}_1
```

• This model uses the principal components as predictors, but we typically want the original predictors. Recall

 $\mathsf{PC}_1 = 0.693 \cdot \texttt{triceps} + 0.699 \cdot \texttt{thigh} + 0.179 \cdot \texttt{midarm}$ 

• Putting these two together gives the final PCR model:

```
\begin{array}{l} \texttt{bodyfat} = 20.195 \ + \\ 0.426 \cdot \texttt{triceps} + 0.429 \cdot \texttt{thigh} + 0.110 \cdot \texttt{midarm} \end{array}
```

Stepwise building a model and rewriting it back in terms of the original predictors is a lot of work. Is there a better way?

## PCR via the pls package

```
library(pls)
```

```
pcr_model <- pcr(bodyfat ~ ., data = bodyfat, validation = "CV")
summary(pcr_model)</pre>
```

```
Data: X dimension: 20 3
Y dimension: 20 1
Fit method: svdpc
Number of components considered: 3
```

VALIDATION: RMSEP Cross-validated using 10 random segments. (Intercept) 1 comps 2 comps 3 comps CV 5.239 2.711 2.735 2.867 adjCV 5.239 2.695 2.713 2.832

```
TRAINING: % variance explained

1 comps 2 comps 3 comps

X 78.72 99.97 100.00

bodyfat 74.97 78.01 80.14
```

## Selecting the optimal number of components

- "1-sigma rule": select model with least number of components whose cross-validation error is at most 1 standard deviation away from optimal model
- In human language: 2 PCs gives lowest RMSEP, but we can go down to 1 PC without losing too much

selectNcomp(pcr\_model, method = "onesigma", plot = TRUE)



Number of components

[1] 1

# Ridge regression (optional)

- PCR is not the only way to "regularize" a regression model
- Ridge regression: like ordinary regression, but punish model for coefficients that become too large.
- Objective function:

$$J_{\mathsf{ridge}}(\alpha,\beta) = J(\alpha,\beta) + \lambda(\alpha^2 + \beta^2).$$

- Parameter  $\lambda$  set to a fixed value or determined via cross-validation.
  - $\lambda = 0$ : ridge regression = ordinary regression
  - $\lambda \to \infty$ : all coefficients become zero
- Can be done with the glmnet package (not very userfriendly)

#### Example session

```
library(glmnet)
predictors <- data.matrix(bodyfat_predictors)
outcome <- bodyfat$bodyfat
lambdas <- 10^seq(2, -2, by = -.1)
ridge_cv <- cv.glmnet(predictors, outcome, alpha = 0, lambda = lambdas)
best <- ridge_cv$lambda.min
best
[1] 0.06309573</pre>
```

```
best_ridge <- glmnet(predictors, outcome, alpha = 0, lambda = best)
coef(best_ridge)</pre>
```

4 x 1 sparse Matrix of class "dgCMatrix" s0 (Intercept) -4.6532088 triceps.skinfold.thickness 0.6433295 thigh.circumference 0.2965686 midarm.circumference -0.2391984