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Goal of dimensionality reduction

• Pre-processing
• Remove collinear predictors (multicollinearity)

• Computational efficiency
• Retain import features to speed up computational processing

• Visualization
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Learning outcomes

At the end of this lecture, you should be able to:

1 Explain the ideas behind PCA
2 Do a PCA by hand given a covariance matrix
3 Do a PCA with R
4 Interpret and explain the PCA results
5 Build and explain a PCR model
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References

• Introduction to statistical modeling. Chapter available on
Ufora.

• An Introduction to Statistical Learning. Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani. Available
for free online at https://www.statlearning.com/.

• PCA: section 6.3
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Reminder: multicollinearity

Bodyfat dataset: 20 observations, predict amount of body fat from
three body measurements.
• Linear regression model:

bodyfat = 117.085
+ 4.334 ⋅ triceps
− 2.857 ⋅ thigh
− 2.186 ⋅ midarm

• Do you see anything
wrong with this?
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Call:
lm(formula = bodyfat ~ ., data = bodyfat)

Residuals:
Min 1Q Median 3Q Max

-3.7263 -1.6111 0.3923 1.4656 4.1277

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.085 99.782 1.173 0.258
triceps.skinfold.thickness 4.334 3.016 1.437 0.170
thigh.circumference -2.857 2.582 -1.106 0.285
midarm.circumference -2.186 1.595 -1.370 0.190

Residual standard error: 2.48 on 16 degrees of freedom
Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641
F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06
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Principal component analysis
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Directions of maximal variability
Intuitively:

• Find directions of maximal variability in the dataset
• Discard directions in which there is neglible variability

8 / 44



Directions of less variability
Since triceps and thigh are highly correlated, specifying both is
superfluous. What do we lose if we throw away one of these
variables?
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Notation

Dataset:
• 𝑁 observations x𝑘, 𝑘 = 1, … , 𝑁
• Each observation is a (column) vector in ℝ𝐷

Data matrix:

X =
⎡
⎢⎢
⎣

x𝑇
1

x𝑇
2
⋮

x𝑇
𝑁

⎤
⎥⎥
⎦

∈ ℝ𝑁×𝐷

Columns of the data matrix:
• Referred to as features, predictors, independent variables
• Denoted by X𝑖, 𝑖 = 1, … , 𝐷
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Notation: example (body fat dataset)

• 20 observations with 3 features each
• Data matrix is 20 × 3 matrix
• Features:

• X1: triceps.skinfold.thickness
• X2: thigh.circumference
• X3: midarm.circumference
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The covariance matrix

Given observations x1, … , x𝑁 ∈ ℝ𝐷, the variance-covariance
matrix S is defined as:

S = 1
𝑁

𝑁
∑
𝑘=1

(x𝑘x𝑇
𝑘 − x̄x̄𝑇 ) .

Structure: variances and covariances between components of the
data.

S =
⎡
⎢⎢
⎣

Var(𝑥1) Cov(𝑥1, 𝑥2) ⋯ Cov(𝑥1, 𝑥𝐷)
Cov(𝑥2, 𝑥1) Var(𝑥2) ⋯ Cov(𝑥2, 𝑥𝐷)

⋮ ⋮ ⋱ ⋮
Cov(𝑥𝐷, 𝑥1) Cov(𝑥𝐷, 𝑥2) ⋯ Var(𝑥𝐷)

⎤
⎥⎥
⎦
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The covariance matrix: examples
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Clearly the covariance matrix will help us find directions of
maximum variability, but how?
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Linear combination of features
• The first principal component Z1 is a linear combination of

the columns of X:

Z1 = 𝑣1X1 + ⋯ + 𝑣𝐷X𝐷,

where we will choose the coefficients 𝑣𝑖 so that the variances
is maximal, in some sense.

• The coefficients 𝑣𝑖 are referred to as the loadings and the
vector

v = ⎡⎢
⎣

𝑣1
⋮

𝑣𝐷

⎤⎥
⎦

is the loadings vector.
• Variance of Z1:

Var(Z1) = v𝑇 Sv.
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Maximizing the variance

• Idea: choose loadings v so that Var(Z1) is maximal.
• Problem: just by increasing the norm of v, variance can

become as large as we want. Solution: impose that ‖v‖ = 1.

PC1: maximization of variance

The loadings vector v for the first principal component is found
by solving the following maximization problem:

maximize v𝑇 Sv so that v𝑇 v = 1.
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Geometric interpretation
• Z1: projection of data on the line in the direction of v.
• Find direction v so that variance is maximal (blue)
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Eigenvalue problem

Through Lagrange multipliers, can show that maximizing variance
is equivalent to finding eigenvalues and eigenvectors of S.

PC1: eigenvalues

The loadings vector v for the first principal component is the
eigenvector of S with the largest eigenvalue:

Sv = 𝜆v

Eigenvectors are typically quite efficient to compute.
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Amount of variance explained
Take the eigenvalue equation

Sv = 𝜆v,

and left-multiply by v𝑇 to get

𝜆 = 𝜆v𝑇 v = v𝑇 Sv = Var(Z1).

Eigenvalues and eigenvectors

• The largest eigenvalue of S is equal to the variance
contained in (“explained by”) the first principal
component Z1.

• The corresponding eigenvector gives the loadings vector
v.
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Example
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The loadings vectors may point in the opposite direction of what
you expected… Why is this not a problem?
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The remaining principal components

Next principal components Z2, Z3, … involve variation in the data
after Z1 has been taken into account.

• For Z2:

maximize Var(Z2) so that Cov(Z1, Z2) = 0

• Equivalent to: find second largest eigenvalue 𝜆2 and
eigenvector v2.

Same story for remaining principal components.

Note

The principal components are uncorrelated linear combinations
of features that maximize variance.
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How many principal components are there?

Recall:
• S is a symmetric 𝐷 × 𝐷 matrix
• Such a matrix always has 𝐷 eigenvalues and eigenvectors

When 𝐷 ≤ 𝑁 (more data points than features)
• In general, 𝐷 non-zero principal components

When 𝐷 > 𝑁 :
• S has rank at most 𝑁 : 𝑁 non-zero principal components
• Can happen in high-dimensional datasets (e.g. gene assays)
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Percentage of variance explained

• Eigenvalue 𝜆𝑖 is amount of variance explained by PC 𝑖.
• Total amount of variance: 𝜆1 + 𝜆2 + ⋯ + 𝜆𝐷
• Percentage of variance explained by PC 𝑖:

𝜆𝑖
𝜆1 + ⋯ + 𝜆𝐷

In many cases, the first few PCs will explain the majority of
variance (80% to 90%).

Dimensionality reduction: we can omit the remaining principal
components with only a small loss of information
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Example
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Blue: first PC, red: second PC.
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Worked out example (by hand)

Dataset is chosen so that

S = [5 2
2 2] .

Eigenvalues:

𝜆1 = 6, 𝜆2 = 1.

Eigenvectors:

v1 = 1√
5 [2

1] , v2 = 1√
5 [−1

2 ] .

−2.5

0.0

2.5

−3 0 3 6
X

Y

24 / 44



Worked out example (with R)

prcomp(df)

Standard deviations (1, .., p=2):
[1] 2.44949 1.00000

Rotation (n x k) = (2 x 2):
PC1 PC2

X 0.8944272 -0.4472136
Y 0.4472136 0.8944272

Note:
• Standard deviations are square roots of eigenvalues
• Columns of rotation matrix give loadings vectors
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Example: body fat dataset

pca <- prcomp(bodyfat_predictors)
pca

Standard deviations (1, .., p=3):
[1] 7.2046011 3.7432587 0.1330841

Rotation (n x k) = (3 x 3):
PC1 PC2 PC3

triceps.skinfold.thickness 0.6926671 0.1511979 0.7052315
thigh.circumference 0.6985058 -0.3842734 -0.6036751
midarm.circumference 0.1797272 0.9107542 -0.3717862
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Percentage of variance explained

summary(pca)

Importance of components:
PC1 PC2 PC3

Standard deviation 7.2046 3.7433 0.13308
Proportion of Variance 0.7872 0.2125 0.00027
Cumulative Proportion 0.7872 0.9997 1.00000

• First 2 PCs explain over 99% of variance in data
• Interpretation:

PC1 = 0.693 ⋅ triceps + 0.699 ⋅ thigh + 0.179 ⋅ midarm
PC2 = 0.151 ⋅ triceps − 0.384 ⋅ thigh − 0.910 ⋅ midarm
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Standardizing the features

Often, data are standardized before running PCA:

Y𝑖 = X𝑖 − X̄𝑖
SD(X𝑖)

• Standardization puts all features on the same scale and affects
the outcome of your PCA.

• Often a good idea when features have different units
(e.g. mm, Watt, sec).

• Not a good idea when features have the same units (e.g. pixel
intensities in an image).

In R: prcomp(df, center = TRUE, scale = TRUE).
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Interpretation of PCA results
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Score plot

• Scatter plot of two PC (usually PC1 and PC2)
• Can be used to spot patterns in data (see later)
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Loadings plot

• Shows how much each variable contributes to each PC
• Useful to discern patterns in PCs
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Scree plot

• Shows percentage of variance explained per PC
• Useful to determine the PCs that contribute most to variance
• Can be made with R’s screeplot command, but better to

make your own (it’s just a line plot)
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Selecting the number of principal components to retain

Many heuristics exist for selecting
“optimal” number of PCs:

• Explain fixed percentage
(e.g. 80%) of variance

• “Elbow” in scree plot
• …

Can also determine number of
PCs dynamically (e.g. if doing
regression on PCs, look at 𝑅2)

Image credit:
https://en.wikipedia.org/wiki/Scree (Kevin
Lenz, CC BY-SA 2.5)
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Biplot
• Biplot = loadings plot + score plot
• Numbers: data for first two PC
• Arrows: contribution of variables to first two PC

biplot(pc)
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Principal component regression
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Principal component regression (PCR)

Idea:
• Do a PCA (usually with standardized features)
• Build a linear model on reduced number of PCs

Why do we do this?
• PCs are uncorrelated, so takes care of multicollinearity
• Results in a simpler model where only important features play

a role

Not always the right thing to do, alternatives exist (e.g. ridge
regression, see later)
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PCR by hand: starting with PC 1
pc1 <- pc$x[, "PC1"]
model_1 <- lm(bodyfat$bodyfat ~ pc1)
summary(model_1)

Call:
lm(formula = bodyfat$bodyfat ~ pc1)

Residuals:
Min 1Q Median 3Q Max

-5.1357 -1.8821 0.2682 1.7107 3.4992

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.19500 0.58688 34.411 < 2e-16 ***
pc1 0.61366 0.08358 7.343 8.13e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.625 on 18 degrees of freedom
Multiple R-squared: 0.7497, Adjusted R-squared: 0.7358
F-statistic: 53.91 on 1 and 18 DF, p-value: 8.128e-07
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PCR by hand: adding PC 2

Call:
lm(formula = bodyfat$bodyfat ~ pc1 + pc2)

Residuals:
Min 1Q Median 3Q Max

-3.9876 -1.8822 0.2562 1.3209 4.0285

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.19500 0.56604 35.678 < 2e-16 ***
pc1 0.61366 0.08061 7.613 7.12e-07 ***
pc2 -0.23785 0.15514 -1.533 0.144
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.531 on 17 degrees of freedom
Multiple R-squared: 0.7801, Adjusted R-squared: 0.7542
F-statistic: 30.15 on 2 and 17 DF, p-value: 2.564e-06
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Aside: variance inflation factors
Reminder: principal components are uncorrelated by definition, so
all the VIFs will be equal to 1.
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PCR by hand: putting together the final model
• We would probably select model_1:

bodyfat = 20.195 + 0.614 ⋅ PC1

• This model uses the principal components as predictors, but
we typically want the original predictors. Recall

PC1 = 0.693 ⋅ triceps + 0.699 ⋅ thigh + 0.179 ⋅ midarm

• Putting these two together gives the final PCR model:

bodyfat = 20.195 +
0.426 ⋅ triceps + 0.429 ⋅ thigh + 0.110 ⋅ midarm

Stepwise building a model and rewriting it back in terms of the
original predictors is a lot of work. Is there a better way?
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PCR via the pls package
library(pls)

pcr_model <- pcr(bodyfat ~ ., data = bodyfat, validation = "CV")
summary(pcr_model)

Data: X dimension: 20 3
Y dimension: 20 1

Fit method: svdpc
Number of components considered: 3

VALIDATION: RMSEP
Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps
CV 5.239 2.711 2.735 2.867
adjCV 5.239 2.695 2.713 2.832

TRAINING: % variance explained
1 comps 2 comps 3 comps

X 78.72 99.97 100.00
bodyfat 74.97 78.01 80.14
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Selecting the optimal number of components
• “1-sigma rule”: select model with least number of components

whose cross-validation error is at most 1 standard deviation
away from optimal model

• In human language: 2 PCs gives lowest RMSEP, but we can
go down to 1 PC without losing too much

selectNcomp(pcr_model, method = "onesigma", plot = TRUE)
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Ridge regression (optional)

• PCR is not the only way to “regularize” a regression model
• Ridge regression: like ordinary regression, but punish model

for coefficients that become too large.
• Objective function:

𝐽ridge(𝛼, 𝛽) = 𝐽(𝛼, 𝛽) + 𝜆(𝛼2 + 𝛽2).

• Parameter 𝜆 set to a fixed value or determined via
cross-validation.

• 𝜆 = 0: ridge regression = ordinary regression
• 𝜆 → ∞: all coefficients become zero

• Can be done with the glmnet package (not very userfriendly)
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Example session
library(glmnet)
predictors <- data.matrix(bodyfat_predictors)
outcome <- bodyfat$bodyfat

lambdas <- 10^seq(2, -2, by = -.1)
ridge_cv <- cv.glmnet(predictors, outcome, alpha = 0, lambda = lambdas)

best <- ridge_cv$lambda.min
best

[1] 0.06309573
best_ridge <- glmnet(predictors, outcome, alpha = 0, lambda = best)
coef(best_ridge)

4 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) -4.6532088
triceps.skinfold.thickness 0.6433295
thigh.circumference 0.2965686
midarm.circumference -0.2391984
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