Principal component analysis: theory and
concepts
Introduction to Statistical Modelling

Prof. Joris Vankerschaver
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Goal of dimensionality reduction

® Pre-processing
® Remove collinear predictors (multicollinearity)

® Computational efficiency
® Retain import features to speed up computational processing

® Visualization
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Learning outcomes

At the end of this lecture, you should be able to:

@ Explain the ideas behind PCA

® Do a PCA by hand given a covariance matrix
® Do a PCA with R

O Interpret and explain the PCA results

@ Build and explain a PCR model
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References

® Introduction to statistical modeling. Chapter available on
Ufora.
® An Introduction to Statistical Learning. Gareth James,
Daniela Witten, Trevor Hastie, Robert Tibshirani. Available
for free online at https://www.statlearning.com/.
® PCA: section 6.3
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Reminder: multicollinearity

Bodyfat dataset: 20 observations, predict amount of body fat from
three body measurements.

® |inear regression model:
bodyfat = 117.085 - /
+4.334 - triceps . /\

—2.857 - thigh

—2.186-midarm | &

® Do you see anything
wrong with this?
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Call:

Im(formula = bodyfat ~ ., data = bodyfat)
Residuals:
Min 1Q Median 3Q Max

-3.7263 -1.6111 0.3923 1.4656 4.1277

Coefficients:

Estimate Std. Error t value
(Intercept) 117.085 99.782 1.173
triceps.skinfold.thickness 4.334 3.016 1.437
thigh.circumference -2.857 2.582 -1.106
midarm.circumference -2.186 1.595 -1.370

Residual standard error: 2.48 on 16 degrees of freedom
Multiple R-squared: 0.8014, Adjusted R-squared: O
F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

Pr(>ltl)
0.258
0.170
0.285
0.190

.7641
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Principal component analysis
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Directions of maximal variability
Intuitively:

® Find directions of maximal variability in the dataset
® Discard directions in which there is neglible variability
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Directions of less variability

Since triceps and thigh are highly correlated, specifying both is

superfluous. What do we lose if we throw away one of these
variables?
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Notation

Dataset:

® N observations x;, k=1,...,N
® Each observation is a (column) vector in R”

Data matrix:

Columns of the data matrix;

® Referred to as features, predictors, independent variables
® Denoted by X;, 1 =1,..., D
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Notation: example (body fat dataset)

® 20 observations with 3 features each
® Data matrix is 20 X 3 matrix

® Features:
® X,: triceps.skinfold.thickness
® X,: thigh.circumference
® X;: midarm.circumference
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The covariance matrix

Given observations x, ..., x,y € RP, the variance-covariance
matrix S is defined as:

N
1 <7
E (xxt —xxT).
k:l

Structure: variances and covariances between components of the

data.
Var(zy) Cov(zy,24) - Cov(xy,zp)
g _ Cov(zy,xq) Var(zy) -+ Cov(xy,xp)
Cov(zp,x;) Cov(xp,zy) -+  Var(zp)
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The covariance matrix: examples

6 6 A 6
* . * . > 2%
19 9 e o.. ° _ % O i o. o’e ‘oo
0 o ® ¢ * 0 . 0 ' °
o s %% © o o0 o’ o
-34 ® < -3 L] -3 . B
-6 61 ! -6
-6 -3 0 3 6 -6 -3 O 3 6 -6 -3 O 3 6
6 0 1 0 5 2
R R N

Clearly the covariance matrix will help us find directions of
maximum variability, but how?
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Linear combination of features

® The first principal component Z, is a linear combination of
the columns of X:

Zl == U1X1 + + UDXD7

where we will choose the coefficients v; so that the variances
is maximal, in some sense.

® The coefficients v; are referred to as the loadings and the
vector

is the loadings vector.

® Variance of Z;:
Var(Z,) = vI'Sv.
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Maximizing the variance

® |dea: choose loadings v so that Var(Z,) is maximal.
® Problem: just by increasing the norm of v, variance can
become as large as we want. Solution: impose that ||v|| = 1.

@ PC1: maximization of variance

The loadings vector v for the first principal component is found
by solving the following maximization problem:

maximize vI' Sv so that viv = 1.
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Geometric interpretation

® 7Z,: projection of data on t

A

he line in the direction of v.
® Find direction v so that variance is maximal (blue)

A

\/
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Eigenvalue problem

Through Lagrange multipliers, can show that maximizing variance
is equivalent to finding eigenvalues and eigenvectors of S.

@ PC1: eigenvalues

The loadings vector v for the first principal component is the
eigenvector of S with the largest eigenvalue:

Sv=A\v

Eigenvectors are typically quite efficient to compute.
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Amount of variance explained
Take the eigenvalue equation
Sv = \v,
and left-multiply by v7 to get

A= \vlv = vISv = Var(Z,).

[ . .
1 Eigenvalues and eigenvectors

® The largest eigenvalue of S is equal to the variance
contained in (“explained by") the first principal
component Z;.

® The corresponding eigenvector gives the loadings vector
V.
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Example

6 61 6
31 31 . 3- %’
° r o o0
° 0:# A ..° * i % 0 i o. \}‘ ‘oo
0 ° & ' * 0 ° 0 (X7 pi 4
®Te 3 %0y © ° ’v5:i= .
34 ¢ ° 31 ] —3- O
—61 —61 -6
-6 -3 O 3 6 -6 -3 O 3 6 -6 -3 0 3 6

The loadings vectors may point in the opposite direction of what

you expected.. Why is this not a problem?
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The remaining principal components

Next principal components Z,, Z, ... involve variation in the data
after Z, has been taken into account.
® For Z,:

maximize Var(Z,) so that Cov(Z,, Z,) =0

® Equivalent to: find second largest eigenvalue )\, and
eigenvector v,.

Same story for remaining principal components.

1 Note

The principal components are uncorrelated linear combinations
of features that maximize variance.
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How many principal components are there?

Recall:

® S is a symmetric D x D matrix
® Such a matrix always has D eigenvalues and eigenvectors

When D < N (more data points than features)
® In general, D non-zero principal components
When D > N:

® S has rank at most N: N non-zero principal components
® Can happen in high-dimensional datasets (e.g. gene assays)
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Percentage of variance explained

® Eigenvalue )\; is amount of variance explained by PC .
® Total amount of variance: A\; + Ay + -+ Ap
® Percentage of variance explained by PC 4:

A\

7

Al 4""'%‘Al)

In many cases, the first few PCs will explain the majority of
variance (80% to 90%).

Dimensionality reduction: we can omit the remaining principal
components with only a small loss of information
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Example

6 6 6
3 3
° 0.
01 01 .
%0y o
-31 -3 *
61, i i i 1 =61, i i i 1 -6 i i i i
-6 -3 0 3 6 -6 -3 0 3 6 -6 -3 0 3 6

Blue: first PC, red: second PC.
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Worked out example (by hand)

Dataset is chosen so that
5 2 29
S = [2 2] . > o
Eigenvalues: 25

Eigenvectors:

-l -5l
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Worked out example (with R)

prcomp (df)

Standard deviations (1, .., p=2):
[1] 2.44949 1.00000

Rotation (n x k) = (2 x 2):
PC1 PC2

X 0.8944272 -0.4472136

Y 0.4472136 0.8944272

Note:

® Standard deviations are square roots of eigenvalues
® Columns of rotation matrix give loadings vectors
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Example: body fat dataset

pca <- prcomp(bodyfat_predictors)
pca

Standard deviations (1, .., p=3):
[1] 7.2046011 3.7432587 0.1330841

Rotation (n x k) = (3 x 3):

PC1 PC2 PC3
triceps.skinfold.thickness 0.6926671 0.1511979 0.7052315
thigh.circumference 0.69850568 -0.3842734 -0.6036751

midarm.circumference 0.1797272 0.9107542 -0.3717862
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Percentage of variance explained

summary (pca)

Importance of components:

PC1 PC2 PC3
Standard deviation 7.2046 3.7433 0.13308
Proportion of Variance 0.7872 0.2125 0.00027
Cumulative Proportion 0.7872 0.9997 1.00000

® First 2 PCs explain over 99% of variance in data
® |nterpretation:

PC, =0.693 - triceps + 0.699 - thigh + 0.179 - midarm
PCy = 0.151 - triceps — 0.384 - thigh — 0.910 - midarm
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Standardizing the features

Often, data are standardized before running PCA:

' SD(X,)

® Standardization puts all features on the same scale and affects
the outcome of your PCA.

® Often a good idea when features have different units
(e.g. mm, Watt, sec).

® Not a good idea when features have the same units (e.g. pixel
intensities in an image).

In R: prcomp(df, center = TRUE, scale = TRUE).
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Interpretation of PCA results
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Score plot

® Scatter plot of two PC (usually PC1 and PC2)
® Can be used to spot patterns in data (see later)

PC2 (21.25% var. explained)

-5 0
PC1 (78.72% var. explained)
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Loadings plot

® Shows how much each variable contributes to each PC
® Useful to discern patterns in PCs

Py
0.5
o Component
£ -~ PC1
g - PC2
3 00 - PC3
-0.5
midarm,cwréum!erence th\gh.circdmference triceps.skinf(')\d thickness
Variable
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Scree plot

® Shows percentage of variance explained per PC

® Useful to determine the PCs that contribute most to variance
® Can be made with R’s screeplot command, but better to
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make your own (it's just a line plot)
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Selecting the number of principal components to retain

Many heuristics exist for selecting
“optimal” number of PCs:

® Explain fixed percentage

(e.g. 80%) of variance

® “Elbow” in scree plot
Can also determine number of
PCs dynamically (e.g. if doing
regression on PCs, look at R?)

Image credit:
https://en.wikipedia.org/wiki/Scree (Kevin
Lenz, CC BY-SA 2.5)
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Biplot

® Biplot = loadings plot + score plot
® Numbers: data for first two PC
® Arrows: contribution of variables to first two PC

biplot(pc)
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Principal component regression
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Principal component regression (PCR)

Idea:

® Do a PCA (usually with standardized features)
® Build a linear model on reduced number of PCs

Why do we do this?

® P(Cs are uncorrelated, so takes care of multicollinearity
® Results in a simpler model where only important features play
a role

Not always the right thing to do, alternatives exist (e.g. ridge
regression, see later)
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PCR by hand: starting with PC 1

pcl <- pc$x[, "PC1"]
model_1 <- lm(bodyfat$bodyfat ~ pcl)
summary (model_1)

Call:
Im(formula = bodyfat$bodyfat ~ pcl)

Residuals:
Min 1Q Median 3Q Max
-5.1357 -1.8821 0.2682 1.7107 3.4992

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.19500 0.58688 34.411 < 2e-16 **x*
pcl 0.61366 0.08358 7.343 8.13e-07 **x*

Signif. codes: O 'sx*' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.625 on 18 degrees of freedom

Multiple R-squared: 0.7497, Adjusted R-squared: 0.7358
F-statistic: 53.91 on 1 and 18 DF, p-value: 8.128e-07
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PCR by hand: adding PC 2

Call:
Im(formula = bodyfat$bodyfat ~ pcl + pc2)

Residuals:
Min 1Q Median 3Q Max
-3.9876 -1.8822 0.2562 1.3209 4.0285

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 20.19500 0.56604 35.678 < 2e-16 **x

pcl 0.61366 0.08061 7.613 7.12e-07 *xx*
pc2 -0.23785 0.15514 -1.533 0.144
Signif. codes: O 'xxx' 0.001 'sx*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.531 on 17 degrees of freedom
Multiple R-squared: 0.7801, Adjusted R-squared: 0.7542
F-statistic: 30.15 on 2 and 17 DF, p-value: 2.564e-06
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Aside: variance inflation factors

Reminder: principal components are uncorrelated by definition, so
all the VIFs will be equal to 1.
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PCR by hand: putting together the final model
® We would probably select model_1:
bodyfat = 20.195 + 0.614 - PC,

® This model uses the principal components as predictors, but
we typically want the original predictors. Recall

PC, =0.693 - triceps + 0.699 - thigh + 0.179 - midarm

® Putting these two together gives the final PCR model:

bodyfat = 20.195 +
0.426 - triceps 4 0.429 - thigh + 0.110 - midarm

Stepwise building a model and rewriting it back in terms of the
original predictors is a lot of work. Is there a better way?
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PCR via the pls package

library(pls)

pcr_model <- pcr(bodyfat ~ ., data = bodyfat, validation = "CV")
summary (pcr_model)

Data: X dimension: 20 3
Y dimension: 20 1
Fit method: svdpc
Number of components considered: 3

VALIDATION: RMSEP

Cross-validated using 10 random segments.
(Intercept) 1 comps 2 comps 3 comps

cv 5.239 2.711 2.735 2.867

adjCv 5.239 2.695 2.713 2.832

TRAINING: % variance explained

1 comps 2 comps 3 comps
X 78.72 99.97  100.00
bodyfat 74.97 78.01 80.14
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Selecting the optimal number of components

® “1-sigma rule”: select model with least number of components
whose cross-validation error is at most 1 standard deviation
away from optimal model

® In human language: 2 PCs gives lowest RMSEP, but we can
go down to 1 PC without losing too much

selectNcomp(pcr_model, method = "onesigma", plot = TRUE)
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Ridge regression (optional)

® PCR is not the only way to “regularize” a regression model

® Ridge regression: like ordinary regression, but punish model
for coefficients that become too large.

® Objective function:

Jridge<a7 ﬁ) = J(Oz, B) + )\(@2 + ﬁ2>
® Parameter \ set to a fixed value or determined via

cross-validation.
® )\ = (: ridge regression = ordinary regression
® )\ — oo: all coefficients become zero
® Can be done with the glmnet package (not very userfriendly)
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Example session

library(glmnet)
predictors <- data.matrix(bodyfat_predictors)
outcome <- bodyfat$bodyfat

lambdas <- 107seq(2, -2, by = -.1)
ridge_cv <- cv.glmnet(predictors, outcome, alpha = 0, lambda = lambdas)

best <- ridge_cv$lambda.min
best

[1] 0.06309573

best_ridge <- glmnet(predictors, outcome, alpha = 0, lambda = best)
coef (best_ridge)

4 x 1 sparse Matrix of class "dgCMatrix"

s0
(Intercept) -4.6532088
triceps.skinfold.thickness 0.6433295
thigh.circumference 0.2965686
midarm.circumference -0.2391984
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