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What is dimensionality reduction?
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What and why

® Reduce the number of variables (“dimensionality”) in a dataset
in a principled way.
e Useful for
® Visualization
® Data preprocessing
® Computational efficiency
® Many different approaches
® Principal component analysis (this course)

® Multidimensional scaling
® t-SNE, UMAP, ..

3/9



Visualization

Figure 2: PCA reduction of nine expression profiles from six to two dimensions.
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From: Lever et al., Principal component analysis, Nature Methods,
Vol. 14, p. 641-642, 2017.



Visualization

Genotype data 197,146 loci in 1387 Europeans, summarized in two
principal components (left) and compared to geographical origin

(right).

From: Novembre et al., Genes mirror geography within Europe,
Nature, Vol. 456, 6 November 2008.
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Data preprocessing

Bodyfat dataset:

e Suffered from high multicollinearity.
® Conclusions from regression model are doubtful.
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Computational efficiency

® A 250 x 250 image consists of 2502 = 62,500 pixels.
® Not all pixels are equally informative.
® Extract signal that is maximally informative, discard rest.
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Principal component analysis

® Covered in this course.
® Works by finding directions in which variance is maximized.
® Good first choice, not so good if patterns are highly nonlinear.
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Other dimensionality reduction methods
t-SNE, UMAP:

® Useful for highly nonlinear relations between features.
® “Deforms” data so that local structure is maintained.
® Frequently used in single-cell RNA sequencing analysis.
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https://www.cancer.gov/ccg/blog/2020/interview-t-sne
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